FORTRAN IMPLEMENTATION FOR NUCLIDE LIQUID DROP MODEL CALCULATIONS WITH NUMERICAL TECHNIQUES
DOI:
https://doi.org/10.54554/jacta.2025.07.01.003Abstract
This research proposes a numerical variation method developed to find the best parameters of the nuclide liquid drop model in calculating its mass. This method was developed because there was no systematic method for finding empirical model parameters in calculating the nuclide mass or binding energy. The modelling used in this study uses the Fortran programming language or formula translation. The results obtained provide a very significant improvement in the model for calculating the mass of stable nuclides. The closeness of the empirical model calculation results to the experimental results shows the model's validity. The delta deviation results from the proposed numerical method give the smallest value compared to existing methods at 111. Meanwhile, the error rate in the proposed method is 0.00088% or 8.84 x 10-6.
Downloads
References
A. Abbas, J. M. Islamia, N. Krishna, and N. Akhtar, “Who proposed the liquid drop model of the nucleus first - Gamow or Bohr ?,” ReserachGate, no. June, pp. 0–8, 2023, doi: 10.13140/RG.2.2.24006.86082.
V. Zelevinsky and A. Volya, “Liquid Drop Model,” Phys. At. Nucl., no. February 2017, pp. 91–111, 2017, doi: 10.1002/9783527693610.ch5.
F. Aumayr, K. Ueda, and E. Sokell, “Roadmap on photonic, electronic and atomic collision physics : III. Heavy particles : with zero to relativistic speeds,” J. Phys. B At. Mol. Opt. Phys. ROADMAP, 2022.
D. Dubbers and M. G. Schmidt, “The neutron and its role in cosmology and particle physics,” Rev. Mod. Phys., vol. 83, no. 4, pp. 1–91, 2011, doi: 10.1103/RevModPhys.83.1111.
R. S. oglu Isayev, “Semi-Empirical Formula for Binding Energy on the Basis of Deuteron Clusterization of the Atomic Nucleus,” J. Sci. Educ., vol. 53, no. January, pp. 2–6, 2018, doi: 10.20861/2312-8089-2018-53-005.
N. Darmawan and A. N. Zazilah, “Perbandingan Metode Halley dan Olver dalam Penentuan Akar-akar Penyelesaian Polinomial Wilkinson,” J. Teor. dan Apl. Mat., vol. 3, no. 2, pp. 93–97, 2019, doi: https://doi.org/10.31764/jtam.v3i2.991.
D. P. Dennis and D. Scherler, “A Combined Cosmogenic Nuclides Approach for Determining the Temperature‐Dependence of Erosion,” J. Geophys. Res. Earth Surf., vol. 127, no. 4, Apr. 2022, doi: 10.1029/2021JF006580.
J. Eysermans et al., “REGAL International Program: Analysis of experimental data for depletion code validation,” Ann. Nucl. Energy, vol. 172, p. 109057, 2022, doi: 10.1016/j.anucene.2022.109057.
S. Qi et al., “Radionuclide identification method for NaI low-count gamma-ray spectra using artificial neural network,” Nucl. Eng. Technol., vol. 54, no. 1, pp. 269–274, 2022, doi: 10.1016/j.net.2021.07.025.
G. A. Kovaltsov and I. G. Usoskin, “A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere,” Earth Planet. Sci. Lett., vol. 291, no. 1–4, pp. 182–188, 2010, doi: 10.1016/j.epsl.2010.01.011.
Q. Wang et al., “Numerical study of the effect of operation parameters on particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model,” Chem. Eng. Sci., vol. 131, pp. 256–270, 2015, doi: 10.1016/j.ces.2015.03.063.
E. Segrè and K. K. Seth, “Experimental Nuclear Physics, Vol. 3,” Phys. Today, vol. 14, no. 5, p. 50, May 1961, doi: 10.1063/1.3057556.
B. Santoso, “QUANTUM ESTIMATES OF ALPHA EMITTER LIFE TIME Budi Santoso,” Cent. Partnersh. Nucl. Technol. Natl. Nucl. Energy Agency, pp. 1–9, 2006, doi: ttps://doi.org/10.17146/aij.2006.113.
I. Kaplan, Nuclear Physics. in Addison-Wesley series in nuclear science and engineering. Addison-Wesley, 1963. [Online]. Available: https://books.google.co.id/books?id=__pQAAAAMAAJ
S. Godfrey, “Comment on Z′’s and the H1 and ZEUS High Q2 Anomalies,” Mod. Phys. Lett. A, vol. 12, no. 25, pp. 1859–1863, Aug. 1997, doi: 10.1142/S0217732397001898.
H. Yuan, W. Deng, X. Zhu, G. Liu, and V. S. J. Craig, “Colloidal Systems in Concentrated Electrolyte Solutions Exhibit Re-entrant Long-Range Electrostatic Interactions due to Underscreening,” Langmuir, vol. 38, no. 19, pp. 6164–6173, May 2022, doi: 10.1021/acs.langmuir.2c00519.
P. Van Duppen, L. Weissman, S. Nuclear, D. Ackermann, and S. Hofmann, “A triplet of differently shaped spin-,” Nature, no. July 2014, 2000, doi: 10.1038/35013012.
R. S. Harmon, “Atomic Number, Mass Number, and Isotopes BT - Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth,” in White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series., W. M. White, Ed., Cham: Springer International Publishing, 2018, pp. 83–85. doi: 10.1007/978-3-319-39312-4_244.
I. Kaplan, NUCLEAR PHYSICS. 1977.
A. I. Diveev, “Small Variations of Basic Solution Method for Non-numerical Optimization,” IFAC-PapersOnLine, vol. 48, no. 25, pp. 28–33, 2015, doi: 10.1016/j.ifacol.2015.11.054.
M. Al-Baali and R. Fletcher, “Variational Methods for Non-Linear Least-Squares,” J. Oper. Res. Soc., vol. 36, no. 5, pp. 405–421, May 1985, doi: 10.1057/jors.1985.68.
S. Mungkasi, “An Accurate Analytical-Numerical Iterative Method for the Susceptible-Infected-Recovered Epidemic Models,” (Jurnal Teor. dan Apl. Mat., vol. 5, no. 2, pp. 262–275, 2021, doi: https://doi.org/10.31764/jtam.v5i2.3876 This.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ruliyanta Ruliyanta, Budi Santoso

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)