
Analysis of Spatial Database Performance for Location Intelligence

1ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 1

Analysis of Spatial Database Performance for Location
Intelligence

Safiza Suhana Kamal Baharin1, Patience Obiageli Akunne2

1,2Centre of Advanced Computing Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah
Jaya, 76100 Durian Tunggal, Melaka, Malaysia

safiza@utem.edu.my

Abstract— This study aims to examine the performance evaluation
of the non-relational spatial database (NoSQL) for location
intelligence. NoSQL means Not Only SQL database. It is an
unstructured database which is a collection of non-relational data
storage systems. Some of the existing NoSQL databases are
Cassandra, CouchDB, Hadoop Hbase, MongoDB, etc. Location
intelligence as a word is used more often to describe the new
generation of GIS. These location-based data require lots of data
uploaded into the database in other to keep current and relevant
information from source devices (smartphones, laptops, etc.). NoSQL
differs from the SQL where SQL stands for Structured Query
Language, invented as a standard high-level interface for the
management of relational database management systems (RDBMS).
Databases based on the relational model include MySQL, MS-SQL
Server, Oracle database, etc. The significance of this study is to
evaluate NoSQL spatial database performance for location
intelligence. The result of the evaluation can help businesses or
organizations to know which database will have a better performance
in term of location data. Thus, we conduct the experiments to outline
the general differences between the SQL and NoSQL and also compare
the speed performance of SQL and NoSQL databases for Location
Intelligence based on throughput and minimize contention. The
latency measured in the experiments shows how long each write or
read request takes to be processed. From the result, MongoDB presents
better best response time and high-performance throughput (i.e.
scalability performance) than Oracle. However, the essential features
such as the basic operation of geo-function support that Oracle
provides were missing in MongoDB. Relational databases are still far
superior if the user needs to calculate geoinformation on the database
level. The results provided by this study are significant only for the
chosen database settings but indicate that NoSQL databases are a
possible alternative, at least for querying information about the
attributes. In conclusion, it shows that both SQL and NoSQL databases
have advantages and disadvantages when performed spatial queries
over location intelligence.

Index Terms—NoSQL, Spatial Database, Location Intelligence

I. INTRODUCTION

atabases evolution inception has been began in 1960s,
which starting from hierarchical and network databases,
object-oriented databases commenced in 1980 and today

with SQL and NoSQL databases and cloud databases. Database
stores information as a file or a set of files on magnetic disk or
tape, optical disk or some other secondary storage device.
Information stored in this file can be broken down into records,
every single of that contains of one or extra fields. The basic
units of data storage are said to be fields, and every single field
contains information pertaining to one aspect or attribute of the
entity delineated by the database. Using keywords and various
sorting commands, users have the option to rapidly search,

rearrange, group and select the fields in many records to retrieve
or create reports on particular aggregates of data according to
different type of databases.

A. Type of Databases
There are six types of databases such as Relational database,

Distributed database, Cloud database, Object-oriented
database, Graph database and NoSQL database. The first type
of database is Relational database. It is a database structured in
a tabular form in that data is described so that it can be
reorganized and accessed in a number of disparate ways. The
structured query language (SQL) is a relational database that is
standard for user and application program interface. Second
type is Distributed Database. It is stored in several physical
locations whereby processing is dispersed or replicated amid
disparate points in a network. This kind of database can be
homogeneous or heterogeneous. The hardware, operating
systems or database applications in a heterogeneous distributed
database may be different at each of the locations. Third, Cloud
database which provides remunerations such as being able to
pay for storage capacity and bandwidth on a per-use basis and
it also offers scalability on demand alongside with high
availability. Forth, is about object-oriented database. It is a
database in that the information or the data to be stored is
embodied as an object. Therefore, object-oriented database can
be seen as a combination of object-oriented programming
(OOP) and database principles. Fifth, is about graph database.
This type of database makes use of graph theory to store map
and query relationships. Each node denotes an entity and
representation of each edge is a connection between nodes.
Varieties of applications such social networking applications,
recommendation software, bio informatics, content
management, security and access control, network and cloud
management can be utilized in graph database. The last one is
NoSQL database. NoSQL means Not Only SQL database. In
other words, it is an unstructured database. This kind of
database is effective for big data performance issues in which
relational database cannot solve. The fifth and last type of
database is classified as non-relational database.

II. DATABASE PERFORMANCE AND MEASUREMENT

Database presentation is described as the optimization of
resource that is utilized to raise throughput and minimize
contention, enabling of the biggest probable workload to be
processed. Five factors that impact database presentation are:
workload, throughput, resources, optimization, and contention.

D

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 1

Analysis of Spatial Database Performance for Location
Intelligence

Safiza Suhana Kamal Baharin1, Patience Obiageli Akunne2

1,2Centre of Advanced Computing Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah
Jaya, 76100 Durian Tunggal, Melaka, Malaysia

safiza@utem.edu.my

Abstract— This study aims to examine the performance evaluation
of the non-relational spatial database (NoSQL) for location
intelligence. NoSQL means Not Only SQL database. It is an
unstructured database which is a collection of non-relational data
storage systems. Some of the existing NoSQL databases are
Cassandra, CouchDB, Hadoop Hbase, MongoDB, etc. Location
intelligence as a word is used more often to describe the new
generation of GIS. These location-based data require lots of data
uploaded into the database in other to keep current and relevant
information from source devices (smartphones, laptops, etc.). NoSQL
differs from the SQL where SQL stands for Structured Query
Language, invented as a standard high-level interface for the
management of relational database management systems (RDBMS).
Databases based on the relational model include MySQL, MS-SQL
Server, Oracle database, etc. The significance of this study is to
evaluate NoSQL spatial database performance for location
intelligence. The result of the evaluation can help businesses or
organizations to know which database will have a better performance
in term of location data. Thus, we conduct the experiments to outline
the general differences between the SQL and NoSQL and also compare
the speed performance of SQL and NoSQL databases for Location
Intelligence based on throughput and minimize contention. The
latency measured in the experiments shows how long each write or
read request takes to be processed. From the result, MongoDB presents
better best response time and high-performance throughput (i.e.
scalability performance) than Oracle. However, the essential features
such as the basic operation of geo-function support that Oracle
provides were missing in MongoDB. Relational databases are still far
superior if the user needs to calculate geoinformation on the database
level. The results provided by this study are significant only for the
chosen database settings but indicate that NoSQL databases are a
possible alternative, at least for querying information about the
attributes. In conclusion, it shows that both SQL and NoSQL databases
have advantages and disadvantages when performed spatial queries
over location intelligence.

Index Terms—NoSQL, Spatial Database, Location Intelligence

I. INTRODUCTION

atabases evolution inception has been began in 1960s,
which starting from hierarchical and network databases,
object-oriented databases commenced in 1980 and today

with SQL and NoSQL databases and cloud databases. Database
stores information as a file or a set of files on magnetic disk or
tape, optical disk or some other secondary storage device.
Information stored in this file can be broken down into records,
every single of that contains of one or extra fields. The basic
units of data storage are said to be fields, and every single field
contains information pertaining to one aspect or attribute of the
entity delineated by the database. Using keywords and various
sorting commands, users have the option to rapidly search,

rearrange, group and select the fields in many records to retrieve
or create reports on particular aggregates of data according to
different type of databases.

A. Type of Databases
There are six types of databases such as Relational database,

Distributed database, Cloud database, Object-oriented
database, Graph database and NoSQL database. The first type
of database is Relational database. It is a database structured in
a tabular form in that data is described so that it can be
reorganized and accessed in a number of disparate ways. The
structured query language (SQL) is a relational database that is
standard for user and application program interface. Second
type is Distributed Database. It is stored in several physical
locations whereby processing is dispersed or replicated amid
disparate points in a network. This kind of database can be
homogeneous or heterogeneous. The hardware, operating
systems or database applications in a heterogeneous distributed
database may be different at each of the locations. Third, Cloud
database which provides remunerations such as being able to
pay for storage capacity and bandwidth on a per-use basis and
it also offers scalability on demand alongside with high
availability. Forth, is about object-oriented database. It is a
database in that the information or the data to be stored is
embodied as an object. Therefore, object-oriented database can
be seen as a combination of object-oriented programming
(OOP) and database principles. Fifth, is about graph database.
This type of database makes use of graph theory to store map
and query relationships. Each node denotes an entity and
representation of each edge is a connection between nodes.
Varieties of applications such social networking applications,
recommendation software, bio informatics, content
management, security and access control, network and cloud
management can be utilized in graph database. The last one is
NoSQL database. NoSQL means Not Only SQL database. In
other words, it is an unstructured database. This kind of
database is effective for big data performance issues in which
relational database cannot solve. The fifth and last type of
database is classified as non-relational database.

II. DATABASE PERFORMANCE AND MEASUREMENT

Database presentation is described as the optimization of
resource that is utilized to raise throughput and minimize
contention, enabling of the biggest probable workload to be
processed. Five factors that impact database presentation are:
workload, throughput, resources, optimization, and contention.

D

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 1

Analysis of Spatial Database Performance for Location
Intelligence

Safiza Suhana Kamal Baharin1, Patience Obiageli Akunne2

1,2Centre of Advanced Computing Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah
Jaya, 76100 Durian Tunggal, Melaka, Malaysia

safiza@utem.edu.my

Abstract— This study aims to examine the performance evaluation
of the non-relational spatial database (NoSQL) for location
intelligence. NoSQL means Not Only SQL database. It is an
unstructured database which is a collection of non-relational data
storage systems. Some of the existing NoSQL databases are
Cassandra, CouchDB, Hadoop Hbase, MongoDB, etc. Location
intelligence as a word is used more often to describe the new
generation of GIS. These location-based data require lots of data
uploaded into the database in other to keep current and relevant
information from source devices (smartphones, laptops, etc.). NoSQL
differs from the SQL where SQL stands for Structured Query
Language, invented as a standard high-level interface for the
management of relational database management systems (RDBMS).
Databases based on the relational model include MySQL, MS-SQL
Server, Oracle database, etc. The significance of this study is to
evaluate NoSQL spatial database performance for location
intelligence. The result of the evaluation can help businesses or
organizations to know which database will have a better performance
in term of location data. Thus, we conduct the experiments to outline
the general differences between the SQL and NoSQL and also compare
the speed performance of SQL and NoSQL databases for Location
Intelligence based on throughput and minimize contention. The
latency measured in the experiments shows how long each write or
read request takes to be processed. From the result, MongoDB presents
better best response time and high-performance throughput (i.e.
scalability performance) than Oracle. However, the essential features
such as the basic operation of geo-function support that Oracle
provides were missing in MongoDB. Relational databases are still far
superior if the user needs to calculate geoinformation on the database
level. The results provided by this study are significant only for the
chosen database settings but indicate that NoSQL databases are a
possible alternative, at least for querying information about the
attributes. In conclusion, it shows that both SQL and NoSQL databases
have advantages and disadvantages when performed spatial queries
over location intelligence.

Index Terms—NoSQL, Spatial Database, Location Intelligence

I. INTRODUCTION

atabases evolution inception has been began in 1960s,
which starting from hierarchical and network databases,
object-oriented databases commenced in 1980 and today

with SQL and NoSQL databases and cloud databases. Database
stores information as a file or a set of files on magnetic disk or
tape, optical disk or some other secondary storage device.
Information stored in this file can be broken down into records,
every single of that contains of one or extra fields. The basic
units of data storage are said to be fields, and every single field
contains information pertaining to one aspect or attribute of the
entity delineated by the database. Using keywords and various
sorting commands, users have the option to rapidly search,

rearrange, group and select the fields in many records to retrieve
or create reports on particular aggregates of data according to
different type of databases.

A. Type of Databases
There are six types of databases such as Relational database,

Distributed database, Cloud database, Object-oriented
database, Graph database and NoSQL database. The first type
of database is Relational database. It is a database structured in
a tabular form in that data is described so that it can be
reorganized and accessed in a number of disparate ways. The
structured query language (SQL) is a relational database that is
standard for user and application program interface. Second
type is Distributed Database. It is stored in several physical
locations whereby processing is dispersed or replicated amid
disparate points in a network. This kind of database can be
homogeneous or heterogeneous. The hardware, operating
systems or database applications in a heterogeneous distributed
database may be different at each of the locations. Third, Cloud
database which provides remunerations such as being able to
pay for storage capacity and bandwidth on a per-use basis and
it also offers scalability on demand alongside with high
availability. Forth, is about object-oriented database. It is a
database in that the information or the data to be stored is
embodied as an object. Therefore, object-oriented database can
be seen as a combination of object-oriented programming
(OOP) and database principles. Fifth, is about graph database.
This type of database makes use of graph theory to store map
and query relationships. Each node denotes an entity and
representation of each edge is a connection between nodes.
Varieties of applications such social networking applications,
recommendation software, bio informatics, content
management, security and access control, network and cloud
management can be utilized in graph database. The last one is
NoSQL database. NoSQL means Not Only SQL database. In
other words, it is an unstructured database. This kind of
database is effective for big data performance issues in which
relational database cannot solve. The fifth and last type of
database is classified as non-relational database.

II. DATABASE PERFORMANCE AND MEASUREMENT

Database presentation is described as the optimization of
resource that is utilized to raise throughput and minimize
contention, enabling of the biggest probable workload to be
processed. Five factors that impact database presentation are:
workload, throughput, resources, optimization, and contention.

D JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 1

Analysis of Spatial Database Performance for Location
Intelligence

Safiza Suhana Kamal Baharin1, Patience Obiageli Akunne2

1,2Centre of Advanced Computing Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah
Jaya, 76100 Durian Tunggal, Melaka, Malaysia

safiza@utem.edu.my

Abstract— This study aims to examine the performance evaluation
of the non-relational spatial database (NoSQL) for location
intelligence. NoSQL means Not Only SQL database. It is an
unstructured database which is a collection of non-relational data
storage systems. Some of the existing NoSQL databases are
Cassandra, CouchDB, Hadoop Hbase, MongoDB, etc. Location
intelligence as a word is used more often to describe the new
generation of GIS. These location-based data require lots of data
uploaded into the database in other to keep current and relevant
information from source devices (smartphones, laptops, etc.). NoSQL
differs from the SQL where SQL stands for Structured Query
Language, invented as a standard high-level interface for the
management of relational database management systems (RDBMS).
Databases based on the relational model include MySQL, MS-SQL
Server, Oracle database, etc. The significance of this study is to
evaluate NoSQL spatial database performance for location
intelligence. The result of the evaluation can help businesses or
organizations to know which database will have a better performance
in term of location data. Thus, we conduct the experiments to outline
the general differences between the SQL and NoSQL and also compare
the speed performance of SQL and NoSQL databases for Location
Intelligence based on throughput and minimize contention. The
latency measured in the experiments shows how long each write or
read request takes to be processed. From the result, MongoDB presents
better best response time and high-performance throughput (i.e.
scalability performance) than Oracle. However, the essential features
such as the basic operation of geo-function support that Oracle
provides were missing in MongoDB. Relational databases are still far
superior if the user needs to calculate geoinformation on the database
level. The results provided by this study are significant only for the
chosen database settings but indicate that NoSQL databases are a
possible alternative, at least for querying information about the
attributes. In conclusion, it shows that both SQL and NoSQL databases
have advantages and disadvantages when performed spatial queries
over location intelligence.

Index Terms—NoSQL, Spatial Database, Location Intelligence

I. INTRODUCTION

atabases evolution inception has been began in 1960s,
which starting from hierarchical and network databases,
object-oriented databases commenced in 1980 and today

with SQL and NoSQL databases and cloud databases. Database
stores information as a file or a set of files on magnetic disk or
tape, optical disk or some other secondary storage device.
Information stored in this file can be broken down into records,
every single of that contains of one or extra fields. The basic
units of data storage are said to be fields, and every single field
contains information pertaining to one aspect or attribute of the
entity delineated by the database. Using keywords and various
sorting commands, users have the option to rapidly search,

rearrange, group and select the fields in many records to retrieve
or create reports on particular aggregates of data according to
different type of databases.

A. Type of Databases
There are six types of databases such as Relational database,

Distributed database, Cloud database, Object-oriented
database, Graph database and NoSQL database. The first type
of database is Relational database. It is a database structured in
a tabular form in that data is described so that it can be
reorganized and accessed in a number of disparate ways. The
structured query language (SQL) is a relational database that is
standard for user and application program interface. Second
type is Distributed Database. It is stored in several physical
locations whereby processing is dispersed or replicated amid
disparate points in a network. This kind of database can be
homogeneous or heterogeneous. The hardware, operating
systems or database applications in a heterogeneous distributed
database may be different at each of the locations. Third, Cloud
database which provides remunerations such as being able to
pay for storage capacity and bandwidth on a per-use basis and
it also offers scalability on demand alongside with high
availability. Forth, is about object-oriented database. It is a
database in that the information or the data to be stored is
embodied as an object. Therefore, object-oriented database can
be seen as a combination of object-oriented programming
(OOP) and database principles. Fifth, is about graph database.
This type of database makes use of graph theory to store map
and query relationships. Each node denotes an entity and
representation of each edge is a connection between nodes.
Varieties of applications such social networking applications,
recommendation software, bio informatics, content
management, security and access control, network and cloud
management can be utilized in graph database. The last one is
NoSQL database. NoSQL means Not Only SQL database. In
other words, it is an unstructured database. This kind of
database is effective for big data performance issues in which
relational database cannot solve. The fifth and last type of
database is classified as non-relational database.

II. DATABASE PERFORMANCE AND MEASUREMENT

Database presentation is described as the optimization of
resource that is utilized to raise throughput and minimize
contention, enabling of the biggest probable workload to be
processed. Five factors that impact database presentation are:
workload, throughput, resources, optimization, and contention.

D

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 2

A. Workload
It is a combination of online deals, batch jobs, ad hoc queries,

and data warehousing scrutiny, utilities, and arrangement
commands managed across the DBMS at each given time.
Sometimes workload can be predicted (such as heavy month-
end processing of payroll, or light access after 6:00 p.m., after
which most users should have left for the day), but at other
times it is unpredictable. Workload can possess extremely big
impact on database performance.

B. Throughput

They overall capability of a computer to process data is
known as throughput. Throughput is composite of I/O speed,
CPU speed, and parallel capabilities of the machine, and the
operating system and system software to be effective.

C. Resources

Software and hardware tools at the disposal of the system.
Examples are; memory, disk, cache controllers and microcode.

D. Optimization

Relational database systems are exceptional, such that query
optimization is mainly accomplished inner to the DBMS. Some
factors that can be optimized such as: SQL formulation,
database parameters, and system parameters.

E. Contention

Contention is the condition in that two or extra constituents
of the workload are trying to use a solitary resource in a
contradictory way. Example, dual updates to the similar piece
of data. Higher the contentions lower the throughput.

Database system contributes as one of the enabling forces for

company transformations. This arrangement supports
enterprise logic and they additionally enable company
intelligence. Database performance measure is defined as the
process of measuring the performance of a database in real time
to know the setbacks and supplementary factors that can cause
setbacks in the future. It is a good method to know which
database is efficient and has good performance. Five ways to
compute database performance employing database statics are
as mentioned in [4];

a) Model Statistics: Time model statistics use period to
recognize quantitative results concerning specific deeds on the
database, such as logon operations and parsing. he most vital
period ideal statistic is DB time. DB period is measured
cumulatively from the period of instance startup and is
computed by aggregating the CPU and pause periods of all
sessions not staying on inactive pause events.

b) Active Session History Statistics: Any session that is
related to the database and is staying for an event that does not
fit in to the idle pause class is believed an active session. Active
Session History (ASH) enables you to scrutinize and present
methodical scrutiny on both present data in the
V$ACTIVE_SESSION_HISTORY view and past data in the
DBA_HIST_ACTIVE_SESS_HISTORY view, frequently
circumventing the demand to replay the workload to draw

supplementary performance information. Object number, file
number, and block number pause event identifier and
parameters, Session identifier and session serial number,
Module and deed term, Client identifier of the session, Service
hash identifier and Customer cluster identifier captures data
across ASH.

c) Wait Events Statistics: Wait events are statistics that are
incremented by a server procedure or thread to indicate that it
had to pause for an event to finish before processing might
continue. Wait event data reveals different symptoms of
setbacks that could be impacting performance, such as latch
contention, buffer contention, and I/O contention.

d) Interpreting Database Statistics: When primarily
scrutinizing performance data, you can devise possible
interpretations of the data by scrutinizing the database statistics.
In other to be sure that your interpretation is accurate, go
through with other data to institute if a statistic or event is
honestly relevant. Because foreground hobbies are tunable, it is
suggested to early examine the statistics from foreground
hobbies beforehand analyzing the statistics from background
activities.

e) Database Time: Database period is described as the sum
of the period consumed inside the database processing user
request. User’s response period is the period interval amid the
instant the appeal is dispatched and the instant the response is
received. The use of database period will enable one to gauge
the performance influence of an entity of the database.
Example; [3] shows the Automatic Database Diagnostic
Monitor (ADDM) automatically diagnoses the bottlenecks
affecting the total database throughput and provides actionable
recommendations to alleviate them. ADDM looks at the
database time spent in two independent dimensions. The first
dimension looks at the database time spent in various phases of
processing user requests. This dimension includes categories
like ‘connecting to the database’, ‘optimizing SQL statements’,
and ‘executing SQL statements’. The second dimension looks
at the database time spent using or waiting for various database
resources used in processing user requests. The database
resources considered in this dimension include both hardware
resources, like CPU and I/O devices, and software resources
like database locks and application locks. Fig. 1, shows an
example of database time graph.

Fig. 1. Sample of DB Time Graph [3]

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 2

A. Workload
It is a combination of online deals, batch jobs, ad hoc queries,

and data warehousing scrutiny, utilities, and arrangement
commands managed across the DBMS at each given time.
Sometimes workload can be predicted (such as heavy month-
end processing of payroll, or light access after 6:00 p.m., after
which most users should have left for the day), but at other
times it is unpredictable. Workload can possess extremely big
impact on database performance.

B. Throughput

They overall capability of a computer to process data is
known as throughput. Throughput is composite of I/O speed,
CPU speed, and parallel capabilities of the machine, and the
operating system and system software to be effective.

C. Resources

Software and hardware tools at the disposal of the system.
Examples are; memory, disk, cache controllers and microcode.

D. Optimization

Relational database systems are exceptional, such that query
optimization is mainly accomplished inner to the DBMS. Some
factors that can be optimized such as: SQL formulation,
database parameters, and system parameters.

E. Contention

Contention is the condition in that two or extra constituents
of the workload are trying to use a solitary resource in a
contradictory way. Example, dual updates to the similar piece
of data. Higher the contentions lower the throughput.

Database system contributes as one of the enabling forces for

company transformations. This arrangement supports
enterprise logic and they additionally enable company
intelligence. Database performance measure is defined as the
process of measuring the performance of a database in real time
to know the setbacks and supplementary factors that can cause
setbacks in the future. It is a good method to know which
database is efficient and has good performance. Five ways to
compute database performance employing database statics are
as mentioned in [4];

a) Model Statistics: Time model statistics use period to
recognize quantitative results concerning specific deeds on the
database, such as logon operations and parsing. he most vital
period ideal statistic is DB time. DB period is measured
cumulatively from the period of instance startup and is
computed by aggregating the CPU and pause periods of all
sessions not staying on inactive pause events.

b) Active Session History Statistics: Any session that is
related to the database and is staying for an event that does not
fit in to the idle pause class is believed an active session. Active
Session History (ASH) enables you to scrutinize and present
methodical scrutiny on both present data in the
V$ACTIVE_SESSION_HISTORY view and past data in the
DBA_HIST_ACTIVE_SESS_HISTORY view, frequently
circumventing the demand to replay the workload to draw

supplementary performance information. Object number, file
number, and block number pause event identifier and
parameters, Session identifier and session serial number,
Module and deed term, Client identifier of the session, Service
hash identifier and Customer cluster identifier captures data
across ASH.

c) Wait Events Statistics: Wait events are statistics that are
incremented by a server procedure or thread to indicate that it
had to pause for an event to finish before processing might
continue. Wait event data reveals different symptoms of
setbacks that could be impacting performance, such as latch
contention, buffer contention, and I/O contention.

d) Interpreting Database Statistics: When primarily
scrutinizing performance data, you can devise possible
interpretations of the data by scrutinizing the database statistics.
In other to be sure that your interpretation is accurate, go
through with other data to institute if a statistic or event is
honestly relevant. Because foreground hobbies are tunable, it is
suggested to early examine the statistics from foreground
hobbies beforehand analyzing the statistics from background
activities.

e) Database Time: Database period is described as the sum
of the period consumed inside the database processing user
request. User’s response period is the period interval amid the
instant the appeal is dispatched and the instant the response is
received. The use of database period will enable one to gauge
the performance influence of an entity of the database.
Example; [3] shows the Automatic Database Diagnostic
Monitor (ADDM) automatically diagnoses the bottlenecks
affecting the total database throughput and provides actionable
recommendations to alleviate them. ADDM looks at the
database time spent in two independent dimensions. The first
dimension looks at the database time spent in various phases of
processing user requests. This dimension includes categories
like ‘connecting to the database’, ‘optimizing SQL statements’,
and ‘executing SQL statements’. The second dimension looks
at the database time spent using or waiting for various database
resources used in processing user requests. The database
resources considered in this dimension include both hardware
resources, like CPU and I/O devices, and software resources
like database locks and application locks. Fig. 1, shows an
example of database time graph.

Fig. 1. Sample of DB Time Graph [3]

2

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 2

A. Workload
It is a combination of online deals, batch jobs, ad hoc queries,

and data warehousing scrutiny, utilities, and arrangement
commands managed across the DBMS at each given time.
Sometimes workload can be predicted (such as heavy month-
end processing of payroll, or light access after 6:00 p.m., after
which most users should have left for the day), but at other
times it is unpredictable. Workload can possess extremely big
impact on database performance.

B. Throughput

They overall capability of a computer to process data is
known as throughput. Throughput is composite of I/O speed,
CPU speed, and parallel capabilities of the machine, and the
operating system and system software to be effective.

C. Resources

Software and hardware tools at the disposal of the system.
Examples are; memory, disk, cache controllers and microcode.

D. Optimization

Relational database systems are exceptional, such that query
optimization is mainly accomplished inner to the DBMS. Some
factors that can be optimized such as: SQL formulation,
database parameters, and system parameters.

E. Contention

Contention is the condition in that two or extra constituents
of the workload are trying to use a solitary resource in a
contradictory way. Example, dual updates to the similar piece
of data. Higher the contentions lower the throughput.

Database system contributes as one of the enabling forces for

company transformations. This arrangement supports
enterprise logic and they additionally enable company
intelligence. Database performance measure is defined as the
process of measuring the performance of a database in real time
to know the setbacks and supplementary factors that can cause
setbacks in the future. It is a good method to know which
database is efficient and has good performance. Five ways to
compute database performance employing database statics are
as mentioned in [4];

a) Model Statistics: Time model statistics use period to
recognize quantitative results concerning specific deeds on the
database, such as logon operations and parsing. he most vital
period ideal statistic is DB time. DB period is measured
cumulatively from the period of instance startup and is
computed by aggregating the CPU and pause periods of all
sessions not staying on inactive pause events.

b) Active Session History Statistics: Any session that is
related to the database and is staying for an event that does not
fit in to the idle pause class is believed an active session. Active
Session History (ASH) enables you to scrutinize and present
methodical scrutiny on both present data in the
V$ACTIVE_SESSION_HISTORY view and past data in the
DBA_HIST_ACTIVE_SESS_HISTORY view, frequently
circumventing the demand to replay the workload to draw

supplementary performance information. Object number, file
number, and block number pause event identifier and
parameters, Session identifier and session serial number,
Module and deed term, Client identifier of the session, Service
hash identifier and Customer cluster identifier captures data
across ASH.

c) Wait Events Statistics: Wait events are statistics that are
incremented by a server procedure or thread to indicate that it
had to pause for an event to finish before processing might
continue. Wait event data reveals different symptoms of
setbacks that could be impacting performance, such as latch
contention, buffer contention, and I/O contention.

d) Interpreting Database Statistics: When primarily
scrutinizing performance data, you can devise possible
interpretations of the data by scrutinizing the database statistics.
In other to be sure that your interpretation is accurate, go
through with other data to institute if a statistic or event is
honestly relevant. Because foreground hobbies are tunable, it is
suggested to early examine the statistics from foreground
hobbies beforehand analyzing the statistics from background
activities.

e) Database Time: Database period is described as the sum
of the period consumed inside the database processing user
request. User’s response period is the period interval amid the
instant the appeal is dispatched and the instant the response is
received. The use of database period will enable one to gauge
the performance influence of an entity of the database.
Example; [3] shows the Automatic Database Diagnostic
Monitor (ADDM) automatically diagnoses the bottlenecks
affecting the total database throughput and provides actionable
recommendations to alleviate them. ADDM looks at the
database time spent in two independent dimensions. The first
dimension looks at the database time spent in various phases of
processing user requests. This dimension includes categories
like ‘connecting to the database’, ‘optimizing SQL statements’,
and ‘executing SQL statements’. The second dimension looks
at the database time spent using or waiting for various database
resources used in processing user requests. The database
resources considered in this dimension include both hardware
resources, like CPU and I/O devices, and software resources
like database locks and application locks. Fig. 1, shows an
example of database time graph.

Fig. 1. Sample of DB Time Graph [3]

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 2

A. Workload
It is a combination of online deals, batch jobs, ad hoc queries,

and data warehousing scrutiny, utilities, and arrangement
commands managed across the DBMS at each given time.
Sometimes workload can be predicted (such as heavy month-
end processing of payroll, or light access after 6:00 p.m., after
which most users should have left for the day), but at other
times it is unpredictable. Workload can possess extremely big
impact on database performance.

B. Throughput

They overall capability of a computer to process data is
known as throughput. Throughput is composite of I/O speed,
CPU speed, and parallel capabilities of the machine, and the
operating system and system software to be effective.

C. Resources

Software and hardware tools at the disposal of the system.
Examples are; memory, disk, cache controllers and microcode.

D. Optimization

Relational database systems are exceptional, such that query
optimization is mainly accomplished inner to the DBMS. Some
factors that can be optimized such as: SQL formulation,
database parameters, and system parameters.

E. Contention

Contention is the condition in that two or extra constituents
of the workload are trying to use a solitary resource in a
contradictory way. Example, dual updates to the similar piece
of data. Higher the contentions lower the throughput.

Database system contributes as one of the enabling forces for

company transformations. This arrangement supports
enterprise logic and they additionally enable company
intelligence. Database performance measure is defined as the
process of measuring the performance of a database in real time
to know the setbacks and supplementary factors that can cause
setbacks in the future. It is a good method to know which
database is efficient and has good performance. Five ways to
compute database performance employing database statics are
as mentioned in [4];

a) Model Statistics: Time model statistics use period to
recognize quantitative results concerning specific deeds on the
database, such as logon operations and parsing. he most vital
period ideal statistic is DB time. DB period is measured
cumulatively from the period of instance startup and is
computed by aggregating the CPU and pause periods of all
sessions not staying on inactive pause events.

b) Active Session History Statistics: Any session that is
related to the database and is staying for an event that does not
fit in to the idle pause class is believed an active session. Active
Session History (ASH) enables you to scrutinize and present
methodical scrutiny on both present data in the
V$ACTIVE_SESSION_HISTORY view and past data in the
DBA_HIST_ACTIVE_SESS_HISTORY view, frequently
circumventing the demand to replay the workload to draw

supplementary performance information. Object number, file
number, and block number pause event identifier and
parameters, Session identifier and session serial number,
Module and deed term, Client identifier of the session, Service
hash identifier and Customer cluster identifier captures data
across ASH.

c) Wait Events Statistics: Wait events are statistics that are
incremented by a server procedure or thread to indicate that it
had to pause for an event to finish before processing might
continue. Wait event data reveals different symptoms of
setbacks that could be impacting performance, such as latch
contention, buffer contention, and I/O contention.

d) Interpreting Database Statistics: When primarily
scrutinizing performance data, you can devise possible
interpretations of the data by scrutinizing the database statistics.
In other to be sure that your interpretation is accurate, go
through with other data to institute if a statistic or event is
honestly relevant. Because foreground hobbies are tunable, it is
suggested to early examine the statistics from foreground
hobbies beforehand analyzing the statistics from background
activities.

e) Database Time: Database period is described as the sum
of the period consumed inside the database processing user
request. User’s response period is the period interval amid the
instant the appeal is dispatched and the instant the response is
received. The use of database period will enable one to gauge
the performance influence of an entity of the database.
Example; [3] shows the Automatic Database Diagnostic
Monitor (ADDM) automatically diagnoses the bottlenecks
affecting the total database throughput and provides actionable
recommendations to alleviate them. ADDM looks at the
database time spent in two independent dimensions. The first
dimension looks at the database time spent in various phases of
processing user requests. This dimension includes categories
like ‘connecting to the database’, ‘optimizing SQL statements’,
and ‘executing SQL statements’. The second dimension looks
at the database time spent using or waiting for various database
resources used in processing user requests. The database
resources considered in this dimension include both hardware
resources, like CPU and I/O devices, and software resources
like database locks and application locks. Fig. 1, shows an
example of database time graph.

Fig. 1. Sample of DB Time Graph [3]

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 2

A. Workload
It is a combination of online deals, batch jobs, ad hoc queries,

and data warehousing scrutiny, utilities, and arrangement
commands managed across the DBMS at each given time.
Sometimes workload can be predicted (such as heavy month-
end processing of payroll, or light access after 6:00 p.m., after
which most users should have left for the day), but at other
times it is unpredictable. Workload can possess extremely big
impact on database performance.

B. Throughput

They overall capability of a computer to process data is
known as throughput. Throughput is composite of I/O speed,
CPU speed, and parallel capabilities of the machine, and the
operating system and system software to be effective.

C. Resources

Software and hardware tools at the disposal of the system.
Examples are; memory, disk, cache controllers and microcode.

D. Optimization

Relational database systems are exceptional, such that query
optimization is mainly accomplished inner to the DBMS. Some
factors that can be optimized such as: SQL formulation,
database parameters, and system parameters.

E. Contention

Contention is the condition in that two or extra constituents
of the workload are trying to use a solitary resource in a
contradictory way. Example, dual updates to the similar piece
of data. Higher the contentions lower the throughput.

Database system contributes as one of the enabling forces for

company transformations. This arrangement supports
enterprise logic and they additionally enable company
intelligence. Database performance measure is defined as the
process of measuring the performance of a database in real time
to know the setbacks and supplementary factors that can cause
setbacks in the future. It is a good method to know which
database is efficient and has good performance. Five ways to
compute database performance employing database statics are
as mentioned in [4];

a) Model Statistics: Time model statistics use period to
recognize quantitative results concerning specific deeds on the
database, such as logon operations and parsing. he most vital
period ideal statistic is DB time. DB period is measured
cumulatively from the period of instance startup and is
computed by aggregating the CPU and pause periods of all
sessions not staying on inactive pause events.

b) Active Session History Statistics: Any session that is
related to the database and is staying for an event that does not
fit in to the idle pause class is believed an active session. Active
Session History (ASH) enables you to scrutinize and present
methodical scrutiny on both present data in the
V$ACTIVE_SESSION_HISTORY view and past data in the
DBA_HIST_ACTIVE_SESS_HISTORY view, frequently
circumventing the demand to replay the workload to draw

supplementary performance information. Object number, file
number, and block number pause event identifier and
parameters, Session identifier and session serial number,
Module and deed term, Client identifier of the session, Service
hash identifier and Customer cluster identifier captures data
across ASH.

c) Wait Events Statistics: Wait events are statistics that are
incremented by a server procedure or thread to indicate that it
had to pause for an event to finish before processing might
continue. Wait event data reveals different symptoms of
setbacks that could be impacting performance, such as latch
contention, buffer contention, and I/O contention.

d) Interpreting Database Statistics: When primarily
scrutinizing performance data, you can devise possible
interpretations of the data by scrutinizing the database statistics.
In other to be sure that your interpretation is accurate, go
through with other data to institute if a statistic or event is
honestly relevant. Because foreground hobbies are tunable, it is
suggested to early examine the statistics from foreground
hobbies beforehand analyzing the statistics from background
activities.

e) Database Time: Database period is described as the sum
of the period consumed inside the database processing user
request. User’s response period is the period interval amid the
instant the appeal is dispatched and the instant the response is
received. The use of database period will enable one to gauge
the performance influence of an entity of the database.
Example; [3] shows the Automatic Database Diagnostic
Monitor (ADDM) automatically diagnoses the bottlenecks
affecting the total database throughput and provides actionable
recommendations to alleviate them. ADDM looks at the
database time spent in two independent dimensions. The first
dimension looks at the database time spent in various phases of
processing user requests. This dimension includes categories
like ‘connecting to the database’, ‘optimizing SQL statements’,
and ‘executing SQL statements’. The second dimension looks
at the database time spent using or waiting for various database
resources used in processing user requests. The database
resources considered in this dimension include both hardware
resources, like CPU and I/O devices, and software resources
like database locks and application locks. Fig. 1, shows an
example of database time graph.

Fig. 1. Sample of DB Time Graph [3]

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 2

A. Workload
It is a combination of online deals, batch jobs, ad hoc queries,

and data warehousing scrutiny, utilities, and arrangement
commands managed across the DBMS at each given time.
Sometimes workload can be predicted (such as heavy month-
end processing of payroll, or light access after 6:00 p.m., after
which most users should have left for the day), but at other
times it is unpredictable. Workload can possess extremely big
impact on database performance.

B. Throughput

They overall capability of a computer to process data is
known as throughput. Throughput is composite of I/O speed,
CPU speed, and parallel capabilities of the machine, and the
operating system and system software to be effective.

C. Resources

Software and hardware tools at the disposal of the system.
Examples are; memory, disk, cache controllers and microcode.

D. Optimization

Relational database systems are exceptional, such that query
optimization is mainly accomplished inner to the DBMS. Some
factors that can be optimized such as: SQL formulation,
database parameters, and system parameters.

E. Contention

Contention is the condition in that two or extra constituents
of the workload are trying to use a solitary resource in a
contradictory way. Example, dual updates to the similar piece
of data. Higher the contentions lower the throughput.

Database system contributes as one of the enabling forces for

company transformations. This arrangement supports
enterprise logic and they additionally enable company
intelligence. Database performance measure is defined as the
process of measuring the performance of a database in real time
to know the setbacks and supplementary factors that can cause
setbacks in the future. It is a good method to know which
database is efficient and has good performance. Five ways to
compute database performance employing database statics are
as mentioned in [4];

a) Model Statistics: Time model statistics use period to
recognize quantitative results concerning specific deeds on the
database, such as logon operations and parsing. he most vital
period ideal statistic is DB time. DB period is measured
cumulatively from the period of instance startup and is
computed by aggregating the CPU and pause periods of all
sessions not staying on inactive pause events.

b) Active Session History Statistics: Any session that is
related to the database and is staying for an event that does not
fit in to the idle pause class is believed an active session. Active
Session History (ASH) enables you to scrutinize and present
methodical scrutiny on both present data in the
V$ACTIVE_SESSION_HISTORY view and past data in the
DBA_HIST_ACTIVE_SESS_HISTORY view, frequently
circumventing the demand to replay the workload to draw

supplementary performance information. Object number, file
number, and block number pause event identifier and
parameters, Session identifier and session serial number,
Module and deed term, Client identifier of the session, Service
hash identifier and Customer cluster identifier captures data
across ASH.

c) Wait Events Statistics: Wait events are statistics that are
incremented by a server procedure or thread to indicate that it
had to pause for an event to finish before processing might
continue. Wait event data reveals different symptoms of
setbacks that could be impacting performance, such as latch
contention, buffer contention, and I/O contention.

d) Interpreting Database Statistics: When primarily
scrutinizing performance data, you can devise possible
interpretations of the data by scrutinizing the database statistics.
In other to be sure that your interpretation is accurate, go
through with other data to institute if a statistic or event is
honestly relevant. Because foreground hobbies are tunable, it is
suggested to early examine the statistics from foreground
hobbies beforehand analyzing the statistics from background
activities.

e) Database Time: Database period is described as the sum
of the period consumed inside the database processing user
request. User’s response period is the period interval amid the
instant the appeal is dispatched and the instant the response is
received. The use of database period will enable one to gauge
the performance influence of an entity of the database.
Example; [3] shows the Automatic Database Diagnostic
Monitor (ADDM) automatically diagnoses the bottlenecks
affecting the total database throughput and provides actionable
recommendations to alleviate them. ADDM looks at the
database time spent in two independent dimensions. The first
dimension looks at the database time spent in various phases of
processing user requests. This dimension includes categories
like ‘connecting to the database’, ‘optimizing SQL statements’,
and ‘executing SQL statements’. The second dimension looks
at the database time spent using or waiting for various database
resources used in processing user requests. The database
resources considered in this dimension include both hardware
resources, like CPU and I/O devices, and software resources
like database locks and application locks. Fig. 1, shows an
example of database time graph.

Fig. 1. Sample of DB Time Graph [3]

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 3

III. RELATED WORKS

The performance of a DBMS plays an integral act in the
decision of a firm to use that database. The task needed for
performance measurement is a convoluted procedure,
countless iterations and adjustments will be demanded to attain
the best presentation probable in a given databases.
Performance measurement can be utilized to recognize
performance bottleneck. A known misinterpretation of
performance measurement is that it measures speed.
Performance measurement can be grasped out on useful
aspects such as ease of use, ease of progress or operational
aspects [12]. However, databases with a large number of
transactions should focus more on high throughput. The
proposed design is derived from a mixture of different needs
from the shareholders involved in the use of geospatial data.
These shareholders include database users and location
intelligence providers.

Table I presents the analysis of related study regarding to
Evaluation of NoSQL Spatial Database Performance for
Location Intelligence focuses on performance matrix. Various
researches into NoSQL spatial database performance has
provided different approaches to evaluate its performance. The
comparison of various databases (relational and Non-
relational) performance was carried to see which database is
good for large amount of data. This paper highlighted database
performances while leaving out how NoSQL database can be
optimized through the achievement of improving the indices,
improvement of the JSON schema and the general database
improvement.

TABLE I
RELATED RESEARCH IN SIMILAR TOPICS

Reference Database and
Technology

Metrics & Performance
result

[6] NoSQL
database
Riak,
MongoDB and
Cassandra

(Throughput, read and write
latency)
NoSQL database technology
provides benefit of scalability
and availability across
horizontal scaling, replication
and clear data models.

[13] NoSQL and
SQL database.
PostrgeSQL and
MongoDB.

(Response time, transaction
time, execution time and
latency)
For PostrgeSQL the response
time increases with large size of
datasets, the response time
reaches 200 seconds. For
MongoDB the response time is
almost similar just differ by a
little seconds. MongoDB keeps
a high performance even with
large datasets whereas;
PostrgeSQL performs better
with small datasets.

[9] NoSQL and
SQL
MongoDB,
RDF (Graph
database), WFS
and MySQL

(Response time, cost, storage
capacity and scalability)
RDF and WFS, due to large
amount of storage data
emerging from RDF conversion
did not provide a higher
performance than initial WFS;

however MongoDB is seen to be
the appropriate solution for
sensor data in terms of storage
management.

[8] NoSQL and
SQL MongoDB
and MySQL

(Total queries per second and
average time taken).
Relational database with its
feature such as schema gave a
logical view of the database
building which is fast, easy to
develop, and eliminated
duplication of data but at the
same time guaranteed
reliability. In NoSQL databases
it provided performance and
horizontal scalability which
made them suitable for data
centers requiring massive
amounts of storage.

[13] NoSQL
database. HBase
and Cassandra,
MongoDB and
CouchDB,
Redis and
Voldemort

(Scalability)
CouchDB needed a proxy server
like RDBMS to achieve
scalability; all the other
databases were able to provide
scalability over multiple nodes.
Therefore Scalability was
delivered on.

[7] NoSQL and
SQL HBase,
MongoDB and
Sharded
MySQL

(Through-put, CPU IO waits
percentage and latency)
NoSQL database does not
depend only on the
configuration of database itself
but also depends on the
capability of nodes in the
database cluster.

[2] NoSQL and
SQL Neo4j and
PostgreSQL

(Objective (speed, disk space
requirement and scalability.
Subjective (maturity/level of
support, stability and ease of
use))
The measurement included a
range of typical spatial queries
over the datasets. in some cases,
Neo4j should be considered as
an alternative for specific tasks.

[11] DBMS (using 3
schemas).
Qosmet
Solution

(Execution time (read)
Throughput (write))
For throughput, schema 1 and 2
are close to each while schema 3
fell about 33%. For execution
time, schema 1 performs best
out of the three for some
queries. Schema 2 and 3 is
consistent than schema 1.
Schema 3 has the best overall
execution time (read)
performance.

[1] NoSQL and
SQL MongoDB
and MYSQL

(Read, write and delete)
It shows that MongoDB has
better performance for most
operations eliminating some
aggregate functions.

[5] NoSQL
MongoDB,
Cassandra and
Amazon
DynamoDB

(Cost, Response time, Latency,
Ease of use, Elasticity and on-
demand self-service and
Throughput)
The NoSQL databases show
high performance and
scalability.

Analysis of Spatial Database Performance for Location Intelligence

3ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 3

III. RELATED WORKS

The performance of a DBMS plays an integral act in the
decision of a firm to use that database. The task needed for
performance measurement is a convoluted procedure,
countless iterations and adjustments will be demanded to attain
the best presentation probable in a given databases.
Performance measurement can be utilized to recognize
performance bottleneck. A known misinterpretation of
performance measurement is that it measures speed.
Performance measurement can be grasped out on useful
aspects such as ease of use, ease of progress or operational
aspects [12]. However, databases with a large number of
transactions should focus more on high throughput. The
proposed design is derived from a mixture of different needs
from the shareholders involved in the use of geospatial data.
These shareholders include database users and location
intelligence providers.

Table I presents the analysis of related study regarding to
Evaluation of NoSQL Spatial Database Performance for
Location Intelligence focuses on performance matrix. Various
researches into NoSQL spatial database performance has
provided different approaches to evaluate its performance. The
comparison of various databases (relational and Non-
relational) performance was carried to see which database is
good for large amount of data. This paper highlighted database
performances while leaving out how NoSQL database can be
optimized through the achievement of improving the indices,
improvement of the JSON schema and the general database
improvement.

TABLE I
RELATED RESEARCH IN SIMILAR TOPICS

Reference Database and
Technology

Metrics & Performance
result

[6] NoSQL
database
Riak,
MongoDB and
Cassandra

(Throughput, read and write
latency)
NoSQL database technology
provides benefit of scalability
and availability across
horizontal scaling, replication
and clear data models.

[13] NoSQL and
SQL database.
PostrgeSQL and
MongoDB.

(Response time, transaction
time, execution time and
latency)
For PostrgeSQL the response
time increases with large size of
datasets, the response time
reaches 200 seconds. For
MongoDB the response time is
almost similar just differ by a
little seconds. MongoDB keeps
a high performance even with
large datasets whereas;
PostrgeSQL performs better
with small datasets.

[9] NoSQL and
SQL
MongoDB,
RDF (Graph
database), WFS
and MySQL

(Response time, cost, storage
capacity and scalability)
RDF and WFS, due to large
amount of storage data
emerging from RDF conversion
did not provide a higher
performance than initial WFS;

however MongoDB is seen to be
the appropriate solution for
sensor data in terms of storage
management.

[8] NoSQL and
SQL MongoDB
and MySQL

(Total queries per second and
average time taken).
Relational database with its
feature such as schema gave a
logical view of the database
building which is fast, easy to
develop, and eliminated
duplication of data but at the
same time guaranteed
reliability. In NoSQL databases
it provided performance and
horizontal scalability which
made them suitable for data
centers requiring massive
amounts of storage.

[13] NoSQL
database. HBase
and Cassandra,
MongoDB and
CouchDB,
Redis and
Voldemort

(Scalability)
CouchDB needed a proxy server
like RDBMS to achieve
scalability; all the other
databases were able to provide
scalability over multiple nodes.
Therefore Scalability was
delivered on.

[7] NoSQL and
SQL HBase,
MongoDB and
Sharded
MySQL

(Through-put, CPU IO waits
percentage and latency)
NoSQL database does not
depend only on the
configuration of database itself
but also depends on the
capability of nodes in the
database cluster.

[2] NoSQL and
SQL Neo4j and
PostgreSQL

(Objective (speed, disk space
requirement and scalability.
Subjective (maturity/level of
support, stability and ease of
use))
The measurement included a
range of typical spatial queries
over the datasets. in some cases,
Neo4j should be considered as
an alternative for specific tasks.

[11] DBMS (using 3
schemas).
Qosmet
Solution

(Execution time (read)
Throughput (write))
For throughput, schema 1 and 2
are close to each while schema 3
fell about 33%. For execution
time, schema 1 performs best
out of the three for some
queries. Schema 2 and 3 is
consistent than schema 1.
Schema 3 has the best overall
execution time (read)
performance.

[1] NoSQL and
SQL MongoDB
and MYSQL

(Read, write and delete)
It shows that MongoDB has
better performance for most
operations eliminating some
aggregate functions.

[5] NoSQL
MongoDB,
Cassandra and
Amazon
DynamoDB

(Cost, Response time, Latency,
Ease of use, Elasticity and on-
demand self-service and
Throughput)
The NoSQL databases show
high performance and
scalability.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 3

III. RELATED WORKS

The performance of a DBMS plays an integral act in the
decision of a firm to use that database. The task needed for
performance measurement is a convoluted procedure,
countless iterations and adjustments will be demanded to attain
the best presentation probable in a given databases.
Performance measurement can be utilized to recognize
performance bottleneck. A known misinterpretation of
performance measurement is that it measures speed.
Performance measurement can be grasped out on useful
aspects such as ease of use, ease of progress or operational
aspects [12]. However, databases with a large number of
transactions should focus more on high throughput. The
proposed design is derived from a mixture of different needs
from the shareholders involved in the use of geospatial data.
These shareholders include database users and location
intelligence providers.

Table I presents the analysis of related study regarding to
Evaluation of NoSQL Spatial Database Performance for
Location Intelligence focuses on performance matrix. Various
researches into NoSQL spatial database performance has
provided different approaches to evaluate its performance. The
comparison of various databases (relational and Non-
relational) performance was carried to see which database is
good for large amount of data. This paper highlighted database
performances while leaving out how NoSQL database can be
optimized through the achievement of improving the indices,
improvement of the JSON schema and the general database
improvement.

TABLE I
RELATED RESEARCH IN SIMILAR TOPICS

Reference Database and
Technology

Metrics & Performance
result

[6] NoSQL
database
Riak,
MongoDB and
Cassandra

(Throughput, read and write
latency)
NoSQL database technology
provides benefit of scalability
and availability across
horizontal scaling, replication
and clear data models.

[13] NoSQL and
SQL database.
PostrgeSQL and
MongoDB.

(Response time, transaction
time, execution time and
latency)
For PostrgeSQL the response
time increases with large size of
datasets, the response time
reaches 200 seconds. For
MongoDB the response time is
almost similar just differ by a
little seconds. MongoDB keeps
a high performance even with
large datasets whereas;
PostrgeSQL performs better
with small datasets.

[9] NoSQL and
SQL
MongoDB,
RDF (Graph
database), WFS
and MySQL

(Response time, cost, storage
capacity and scalability)
RDF and WFS, due to large
amount of storage data
emerging from RDF conversion
did not provide a higher
performance than initial WFS;

however MongoDB is seen to be
the appropriate solution for
sensor data in terms of storage
management.

[8] NoSQL and
SQL MongoDB
and MySQL

(Total queries per second and
average time taken).
Relational database with its
feature such as schema gave a
logical view of the database
building which is fast, easy to
develop, and eliminated
duplication of data but at the
same time guaranteed
reliability. In NoSQL databases
it provided performance and
horizontal scalability which
made them suitable for data
centers requiring massive
amounts of storage.

[13] NoSQL
database. HBase
and Cassandra,
MongoDB and
CouchDB,
Redis and
Voldemort

(Scalability)
CouchDB needed a proxy server
like RDBMS to achieve
scalability; all the other
databases were able to provide
scalability over multiple nodes.
Therefore Scalability was
delivered on.

[7] NoSQL and
SQL HBase,
MongoDB and
Sharded
MySQL

(Through-put, CPU IO waits
percentage and latency)
NoSQL database does not
depend only on the
configuration of database itself
but also depends on the
capability of nodes in the
database cluster.

[2] NoSQL and
SQL Neo4j and
PostgreSQL

(Objective (speed, disk space
requirement and scalability.
Subjective (maturity/level of
support, stability and ease of
use))
The measurement included a
range of typical spatial queries
over the datasets. in some cases,
Neo4j should be considered as
an alternative for specific tasks.

[11] DBMS (using 3
schemas).
Qosmet
Solution

(Execution time (read)
Throughput (write))
For throughput, schema 1 and 2
are close to each while schema 3
fell about 33%. For execution
time, schema 1 performs best
out of the three for some
queries. Schema 2 and 3 is
consistent than schema 1.
Schema 3 has the best overall
execution time (read)
performance.

[1] NoSQL and
SQL MongoDB
and MYSQL

(Read, write and delete)
It shows that MongoDB has
better performance for most
operations eliminating some
aggregate functions.

[5] NoSQL
MongoDB,
Cassandra and
Amazon
DynamoDB

(Cost, Response time, Latency,
Ease of use, Elasticity and on-
demand self-service and
Throughput)
The NoSQL databases show
high performance and
scalability.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 3

III. RELATED WORKS

The performance of a DBMS plays an integral act in the
decision of a firm to use that database. The task needed for
performance measurement is a convoluted procedure,
countless iterations and adjustments will be demanded to attain
the best presentation probable in a given databases.
Performance measurement can be utilized to recognize
performance bottleneck. A known misinterpretation of
performance measurement is that it measures speed.
Performance measurement can be grasped out on useful
aspects such as ease of use, ease of progress or operational
aspects [12]. However, databases with a large number of
transactions should focus more on high throughput. The
proposed design is derived from a mixture of different needs
from the shareholders involved in the use of geospatial data.
These shareholders include database users and location
intelligence providers.

Table I presents the analysis of related study regarding to
Evaluation of NoSQL Spatial Database Performance for
Location Intelligence focuses on performance matrix. Various
researches into NoSQL spatial database performance has
provided different approaches to evaluate its performance. The
comparison of various databases (relational and Non-
relational) performance was carried to see which database is
good for large amount of data. This paper highlighted database
performances while leaving out how NoSQL database can be
optimized through the achievement of improving the indices,
improvement of the JSON schema and the general database
improvement.

TABLE I
RELATED RESEARCH IN SIMILAR TOPICS

Reference Database and
Technology

Metrics & Performance
result

[6] NoSQL
database
Riak,
MongoDB and
Cassandra

(Throughput, read and write
latency)
NoSQL database technology
provides benefit of scalability
and availability across
horizontal scaling, replication
and clear data models.

[13] NoSQL and
SQL database.
PostrgeSQL and
MongoDB.

(Response time, transaction
time, execution time and
latency)
For PostrgeSQL the response
time increases with large size of
datasets, the response time
reaches 200 seconds. For
MongoDB the response time is
almost similar just differ by a
little seconds. MongoDB keeps
a high performance even with
large datasets whereas;
PostrgeSQL performs better
with small datasets.

[9] NoSQL and
SQL
MongoDB,
RDF (Graph
database), WFS
and MySQL

(Response time, cost, storage
capacity and scalability)
RDF and WFS, due to large
amount of storage data
emerging from RDF conversion
did not provide a higher
performance than initial WFS;

however MongoDB is seen to be
the appropriate solution for
sensor data in terms of storage
management.

[8] NoSQL and
SQL MongoDB
and MySQL

(Total queries per second and
average time taken).
Relational database with its
feature such as schema gave a
logical view of the database
building which is fast, easy to
develop, and eliminated
duplication of data but at the
same time guaranteed
reliability. In NoSQL databases
it provided performance and
horizontal scalability which
made them suitable for data
centers requiring massive
amounts of storage.

[13] NoSQL
database. HBase
and Cassandra,
MongoDB and
CouchDB,
Redis and
Voldemort

(Scalability)
CouchDB needed a proxy server
like RDBMS to achieve
scalability; all the other
databases were able to provide
scalability over multiple nodes.
Therefore Scalability was
delivered on.

[7] NoSQL and
SQL HBase,
MongoDB and
Sharded
MySQL

(Through-put, CPU IO waits
percentage and latency)
NoSQL database does not
depend only on the
configuration of database itself
but also depends on the
capability of nodes in the
database cluster.

[2] NoSQL and
SQL Neo4j and
PostgreSQL

(Objective (speed, disk space
requirement and scalability.
Subjective (maturity/level of
support, stability and ease of
use))
The measurement included a
range of typical spatial queries
over the datasets. in some cases,
Neo4j should be considered as
an alternative for specific tasks.

[11] DBMS (using 3
schemas).
Qosmet
Solution

(Execution time (read)
Throughput (write))
For throughput, schema 1 and 2
are close to each while schema 3
fell about 33%. For execution
time, schema 1 performs best
out of the three for some
queries. Schema 2 and 3 is
consistent than schema 1.
Schema 3 has the best overall
execution time (read)
performance.

[1] NoSQL and
SQL MongoDB
and MYSQL

(Read, write and delete)
It shows that MongoDB has
better performance for most
operations eliminating some
aggregate functions.

[5] NoSQL
MongoDB,
Cassandra and
Amazon
DynamoDB

(Cost, Response time, Latency,
Ease of use, Elasticity and on-
demand self-service and
Throughput)
The NoSQL databases show
high performance and
scalability.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

4

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 4

IV. EXPERIMENT ENVIRONMENT
Databases that can be used to test NoSQL performance

with geo-spatial functions include MongoDB and
CouchBase. For SQL with geo-spatial function is
PostgreSQL and Oracle. The NoSQL performs on the CAP
theorem concept (Consistency-Availability-Partition
Tolerance). The implementation of the proposed framework
will be tested based on scenario and an analysis will be
conducted using SQL database (Oracle) in comparison to
NoSQL database (MongoDB), which also based on the data
requirement of an App-based ride services. This App-based
ride services offers ride, lift and on-demand ride service.
With this App-based ride service users can indicate their
pick-up location and their drop-off location, and sometimes
a user can indicate more than one drop-off location. The
stakeholders involved in this App-based ride services are
Apps user (e.g. customer) and driver. Once a user has
indicated his pick-up location and drop-off location, the
users expects a fast delivery response from the app by
showing that the app found a driver for the user and in some
cases, it might be difficult to find a driver. When the driver
is found, being able to use the map to find the exact location
of the user. Fig 2 shows the entity relationship diagram
(ERD) contains entity, attributes, constraint, datatypes and
data size which will be stored in the Oracle database as
tables, rows and columns.

Fig. 2. ERD for Test Scenario for Relational Database

Fig. 3 shows how the data will be stored in MongoDB used
JSON. In order to evaluate the two databases, we used a system
that has an Intel (R) Pentium (R) CPU N3540 @ 2.16GHz with
4GB hard disk and windows 7 Ultimate 64bit operating system
to conduct our experiment. We came up with a test scenario
which we used to design our data structure for both databases.
Oracle 12c Express Edition is installed for SQL database and
MongoDB 3.6.4 2008R2Plus Enterprise for NoSQL database.

In other to carry out our testing we wrote three (3) complex
SQL queries in term of distance to test response time of the both
database in five scales of 5000, 20000, 50000, 75000 and
100000 records. For throughput, the metric was tested using
SELECT and DELETE for both database in five scales of 5,000,

20,000, 50,000, 75,000 and 100,000 records. For Oracle
Database PL/SQL is written to automatically populate data into
the database and for MongoDB we generated JSON data online
using InsertMany. We inserted 2000 data each. In this paper,
we measure the write and read latency, as well as the throughput.

Fig. 3. NoSQL Data Schema for Test Scenario

The latency measured in these experiments shows how
long each individual write or read request takes to be
processed. It does not include network latency between the
load generator and the database cluster. Instead, it is measured
from the database perspective, i.e., the time that is required to
process a single request and result output. Set of queries are
written to test the response time/latency and the throughput is
measured based on CRUD and the seconds it takes for the
request to be processed and also the response time/ latency and
throughput is measured in scale of number of records inserted
and maximum of five (5) seconds. Table II shows the details
of different features of the database management systems that
we are evaluating.

The SQL query used to evaluate the spatial performance of

SQL (in Oracle) and NoSQL (MongoDB) database are based
on these three (3) queries:

• Q1:To find driver where distance is 10, 15, 25, 30, 35,

40, 45 and 50 kilometers.
• Q2:To find total Number of Trips made by Driver.
• Q3:To find total Number of Trip where Status is

completed or Not.

Analysis of Spatial Database Performance for Location Intelligence

5ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 5

TABLE II
DATABASE FEATURE

 Oracle Database Mongo DB
Spatial query Oracle Lucene index Spatial query
Extension module to
support distributed
computing

Natively distributed Natively
distributed

Language Java C++
Query Language SQL Json
Data-type SDO_GEOMETRY GeoJSON
Partitioning Method Sharding Sharding
Transaction Property ACIDE/BASE BASE
License Apache 2.0 GNU AGPL

v3.0
Version 12.2.0.1 3.6.4
Data Model Column +row

relational DBMS
Document +key

First Release 2016/2017 2018

The SQL statement used to find the distance of the driver

in kilometers using the spatial function in Oracle database and
MongoDB to find the drivers distance is shown in Fig. 4 and
Fig. 5 respectively.

Fig. 4. SQL Statement to Query Distance in Kilometer for Q1

Fig. 5. Query Statement for NoSQL for Q1

The SQL statement to Q2 in Oracle database to find the

total number of trips made by the driver by using the aggregate
function sum and count to find the total trips in the Booking
table is shown in Fig. 6.

Fig. 6. SQL Statement to Query Distance in Kilometer for Q2

The SQL statement to Q3 in Oracle database to find a total
trip made by driver if completed or not is shown in Fig. 7.

Fig. 7. SQL Statement to Query Status is Completed or Not for Q3

To evaluate the database performance two metrics are
used; throughput which is the average number of operations
per seconds and latency which is average time required to
perform a single operation. Both, throughput and latency
equation are shown in (1) and (2) respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑟𝑟𝑝𝑝 = (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟)∗(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟𝑜𝑜)
𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (1)

𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑜𝑜𝑎𝑎𝑛𝑛𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜𝑛𝑛𝑛𝑛 1 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 𝑜𝑜𝑛𝑛𝑛𝑛 𝑜𝑜ℎ𝑛𝑛𝑛𝑛𝑜𝑜𝑟𝑟 (2)

V. RESULT ANALYSIS AND DISCUSSION

The vast amount of stored data is seen as a characteristics of
today’s high-tech. Spatial data fulfill the criteria of fast
changing, colossal datasets that in the end makes constant
indexing of data necessary. It is vital to understand the
presentation if NoSQL and SQL can grasp this rising increase
of colossal datasets.

A. Result on Response/ Latency

Table III and IV shows the distance and the scale of the record
in 5000, 20,000, 50,000, 75,000 and 100,000 in Oracle and
MongoDB for Q1. The SQL query in Fig. 4 and Fig. 5 is run to
find distance of the driver for 10, 15, 25, 35, 40, 45 and 50
kilometers and the time (in second) is recorded.

TABLE III
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 5000

AND 2000
Distance Number of Data

5000 20000

Oracle MongoDB Oracle MongoDB
10 0.01 0.02 0.02 0.02
15 0.01 0.03 0.04 0.03
25 0.03 0.03 0.08 0.03
30 0.03 0.03 0.13 0.03
35 0.04 0.03 0.17 0.03
40 0.05 0.03 0.22 0.03
45 0.07 0.03 0.26 0.03
50 0.09 0.03 0.32 0.03

SELECT d.driver_name, d.phone_no,
sdo_geom.sdo_distance (d.driver_location,
u.user_location, 1, ‘unit=km’) as distance
FROM driver d, user_details u
WHERE u.user_id=5
AND sdo_within_distance(d.driver_location,
u.user_location, ‘distance=10 unit=km’)=
‘TRUE’;

db.Drivers.find({driver_location: {
 $near:
{ $geometry:
 {
 type:"Point",
 coordinates:[-69.281779, -61.805321]
 },$maxDistance:40000
}
 }
})

SELECT count (b.booking_id) as total,
d.driver_name as name, sum
(sdo_geom.sdo_distance
(b.pickup_location,b.dropoff_location,1,’unit=
km’)) as covered
FROM driver d join booking b on
b.driver_id=d.driver_id
WHERE d.driver_id=390002
GROUP BY d.driver_name
ORDER BY total;

SELECT count(booking_id) as total, status as
status, sum (sdo_geom.sdo_distance
(pickup_location, dropoff_location, 1,
‘unit=km’)) as covered
FROM booking WHERE status=0 OR status=1 OR
status=2 GROUP BY status ORDER BY total;

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

6

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 6

TABLE IV
DISTANCE AND SCALE OF THE RECORD FOR NUMBER OF RECORD 50000,

75000 AND 2000
Dist Number of Data

50000 75000 100000

Oracle Mongo
DB

Oracle Mongo
DB

Oracle Mongo
DB

10 0.30 0.02 0.32 0.03 0.38 0.04
15 0.34 0.03 0.34 0.03 0.41 0.04
25 0.36 0.03 0.34 0.03 0.43 0.05
30 0.36 0.03 0.38 0.04 0.46 0.05
35 0.40 0.03 0.39 0.04 0.47 0.05
40 0.42 0.03 0.40 0.04 0.48 0.05
45 0.41 0.03 0.43 0.04 0.50 0.05
50 0.46 0.03 0.48 0.04 0.51 0.06

The results show that there is better performance for NoSQL

as data size increases, whereas SQL fails at a very colossal
dataset. SQL increases exponentially as size of dataset
increases, whereas NoSQL still performs within some bound.
Index querying for NoSQL and SQL differs. NoSQL uses a 2D-
sphere index and SQL uses GST (Generalized Search Tree)
index. Based on query for attribute information, the
performance for NoSQL response time is less than the response
time for SQL databases, because the SQL databases will need
more time to answer queries. In term of queries using geo-
function within, the datasets for NoSQL doesn’t play much
of a big role. The response time for SQL and NoSQL is almost
linear; NoSQL differs by some seconds [10].

Table V shows the result of the time recorded (in second)
from the Q2. While the distance between two geographical
points can be computed using the “sdo_distance
function” in contrast using native functionality MongoDB
does not offer any functionality to calculate this distance. The
solution to this inability is selecting the data and manipulating
the calculation on the client-side server.

TABLE V

NUMBER OF TRIPS
NO.OF RECORDS TIME (SECONDS)

5000 0.01
20000 0.03
50000 0.06
75000 0.07

100000 0.07

Table VI shows the result of the time recorded (in second)

from the Q3.

TABLE VI
TOTAL TRIPS

NO.OF RECORDS TIME (SECONDS)

5000 9.67

20000 37.47

50000 93.46

75000 97.98

100000 106.86

B. Result on Throughput
The results of the throughput evaluation for both Oracle and

MongoDB are shown in Table V to Table VII. In this study, the
throughput was conducted for SELECT and DELETE statements
to test the response time using a scale of data records in 5000,
20,000, 50,000, 750,000, and 100,000. A Driver, User, and
Booking was an entity from the SQL data structure in Figure 2
and NoSQL data schema in Figure 3.

TABLE V

ORACLE AND MONGODB THROUGHPUT FOR DRIVER
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.47 8.40 0.01 1.81

20000 0.01 46.99 0.01 1.92
50000 0.01 185.13 0.01 5.48
75000 0.01 223.12 0.01 6.56

100000 0.01 474.48 0.02 7.12

TABLE VI
ORACLE AND MONGODB THROUGHPUT FOR USER

DATA ORACLE MONGODB
 SELECT DELETE SELECT DELETE

5000 1.27 8.43 0.01 1.79
20000 0.01 47.82 0.01 1.94
50000 0.01 194.89 0.01 3.67
75000 0.01 223.17 0.01 5.43

100000 0.01 483.84 0.02 6.24

TABLE VII

ORACLE AND MONGODB THROUGHPUT FOR BOOKING
DATA ORACLE MONGODB

 SELECT DELETE SELECT DELETE
5000 1.72 0.24 0.01 2.01

20000 0.01 0.88 0.01 2.01
50000 0.01 2.13 0.01 4.68
75000 0.01 2.66 0.01 7.56

100000 0.01 9.20 0.02 7.78

To get time in the seconds, we ran each query five times and
then divided the result by five to get the average. The
experimental findings are plotted based on time (seconds). Fig.
8(a) to Fig. 8(h) showing the response/ latency time for scale
10km, 15km, 25km, 30km, 35km, 40km, 45km, and 50km
respectively.

Fig. 8 (a) the response/ latency time for 10km

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

Analysis of Spatial Database Performance for Location Intelligence

7ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 7

Fig. 8 (b) the response/ latency time for 15km

Fig. 8 (c) the response/ latency time for 25km

Fig. 8 (d) the response/ latency time for 30km

Fig. 8 (e) the response/ latency time for 35km

Fig. 8 (f) the response/ latency time for 40km

Fig. 8 (g) the response/ latency time for 45km

Fig. 8 (h) the response/ latency time for 50km

Fig. 8(a) shows that MongoDB has a faster response time
than the Oracle database. At first, the Oracle had fast response
time for 5000 to 20,000 records, however, from 20,000 records
and above MongoDB gives a steady result. Fig. 8(b) to Fig.
8(d), shows MongoDB outperforms Oracle Database. Oracle
has fast response time for smaller data from the scale of 5000
to at most 10,000 records. When it comes to applying index on
the spatial data type in Oracle with records above 50,000
records, the tablespace in Oracle cannot contain more records
due to the limitation of Oracle Express Edition. Generally,
MongoDB has a fast response time for large records and shows
better performance for spatial data. Fig. 8 (e) to Fig. 8(f) shows
that MongoDB has a better faster response time than Oracle
Database. Oracle database has a fast response time when it has
to do with querying a single row. For Fig. 8 (g) to Fig. 8 (h), it
shows that as the distance to calculate increases, the response

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

8

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 2 No. 2 November 2020

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 9

REFERENCES
[1] Aboutorabi, Seyyed & Rezapour, Mehdi & Moradi, Milad & Ghadiri,

Nasser. (2015). Performance evaluation of SQL and MongoDB
databases for big e-commerce data.

[2] Bart Baas (2012). Geographical Information Management and
Applications [online] Available at:
http://www.gdmc.nl/publications/2012/Neo4j_versus_PostGIS.pdf
[Accessed 18 Apr. 2018].

[3] Dias. K, Ramacher. M, Shaft. U, Venkataramani. V, Wood. G. (2005)
Automatic Performance Diagnosis and Tuning in Oracle. Proceedings
of the CIDR Conference. Docendo. p. 196.

[4] Docs.oracle.com. (2018). Measuring Database Performance. [online]
Available at:
https://docs.oracle.com/database/121/TGDBA/measure_db.htm#TG
DBA146 [Accessed 1 Jun. 2018].

[5] George Antoniou, Evaluation of Major NoSQL Databases, Master
Thesis, The University of Edinburgh, 2016.

[6] Gorton, Ian & Klein, John. (2015). Performance Evaluation of NoSQL
Databases: A Case Study.

[7] Harish Balasubramanian. (2014). Performance Analysis of Scalable
SQL and NOSQL Databases: A Quantitative Approach.

[8] Hadjigeorgiou, C. (2013). RDBMS vs NoSQL: Performance and
Scaling Comparison.

[9] Mehfooz, Muhammad Arslan. SenseMark – A database benchmark
and evaluation study for alternative databases for Sensor data and IoT.
Master thesis, University of Oslo, 2016

[10] Reinhardt, Wolfgang & Schmid, Stephan & Gálicz, Eszter. (2015).
Performance investigation of selected SQL and NoSQL databases.

[11] Ruottinen, P. (2015). Database architecture design and performance
evaluation for Quality of Service measurements: Master's thesis.
University of Oulu.

[12] Sawyer, T. (1992). Doing your own Benchmark, in Benchmark
Handbook: For Database and Transaction Processing Systems, edited
by J Gray, San Francisco: Morgan Kaufmann Publishers Inc.

[13] Stephan Gerhard Schmid, Eszter Galicz, Wolfgang Reinhardt (2015),
WMS performance of selected SQL and NoSQL databases, Computer
ScienceInternational Conference on Military Technologies (ICMT)

[14] Toit, P.D. (2016). An evaluation of non-relational database
management systems as suitable storage for user generated text-based
content in a distributed environment.

Safiza Suhana Kamal Baharin,
raduated with Bachelor of Science in
(Geoinformatics) and Master of Science
in Geoinformatics from University of
Technology of Malaysia (UTM), Skudai.
She received her PhD in Information and

Communication Technology from Universiti Teknikal
Malaysia Melaka (UTeM). As senior lecturer in Software
Engineering Department, she explores various research
themes related to Database, software engineering and ICT,
specifically in Spatial Databases, Geoinformatics, and
Spatio-temporal Analysis.

Patience Obiageli Akunne,
graduated with Master of Computer
Science (Database Technology) in the
Faculty of Information and
Communication Technology, Universiti
Teknikal Malaysia Melaka (UTeM).

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 8

time for the Oracle database is delayed. Oracle database takes
a long time to output results, whereas, MongoDB no matter the
distance, has a faster response time. Fig. 9 shows the results for
the SELECT statement for User Analysis in the Oracle
database. It shows that for 5,000 records, the Oracle provided a
low throughput performance, but it shows a high throughput
performance from 6,000 to 100,000 records. In the meantime,
it shows high throughput performance for the five scales for
MongoDB. MongoDB outperforms the Oracle database for the
DELETE statement.

Fig. 9 User Analysis

Fig. 10 shows the result of the Oracle SELECT statement
for Driver Analysis. It shows low throughput performance for
5,000 records but shows high throughput from 6,000 to 100,000
records. MongoDB maintains a high throughput from the first
to the fifth scale. MongoDB has a higher throughput
performance than the Oracle database for the DELETE
statement.

Fig. 10 Driver Analysis

The result of the SELECT statement for Booking Analysis
in Oracle is shown in Fig. 11. The result shows low throughput
performance for 5,000 records but maintains a high throughput
from 6,000 to 10,0000 records. MongoDB has a high
throughput performance for SELECT statements. For the
DELETE statement, the Oracle outperforms MongoDB but,
generally shows that Oracle takes a longer time to respond to

the DELETE statement. Therefore, MongoDB has a high
throughput performance rather than Oracle.

Fig. 11 Booking Analysis

VI. CONCLUSION

In conclusion, MongoDB outperforms Oracle in terms
of scalability, allowing additions and improvements without
any essential changes to the database. In the meantime, this
will have a significant impact on Oracle's database. Since
Oracle is a relational database, the scalability of this
database can be a bit difficult. It is because some tables are
linked to each other in terms of the parent-child relationship.
Data cannot be added without first referring to the parent
key (primary key) and before attending the child key
(foreign key), but, MongoDB, which is non-relative, it has
a better scalability performance. The Oracle database does
not have the best response time and high-performance
throughput. Both databases Oracle and MongoDB have
similar speeds for the SELECT statement. During the
experiment, to query about the distance, the index was
created for columns with a spatial data type. However, while
conducting the DELETE statement, the index was not
dropped first. Hence, it resulted in the DELETE statement
taking a too long run. Due to this process, MongoDB has a
higher throughput than Oracle. However, MongoDB has its
weakness when aggregate functions are done on non-key
attributes. It has a limitation function of geo-proximity
search queries (which does not natively exist) compared to
the Oracle database. Thus, it makes the Oracle database still
far superior if the user needs to calculate geoinformation on
the database level especially, when it’s related to the
location intelligence.

ACKNOWLEDGMENT

The authors would like to thank CIT, Center for
Advanced Computing Technology (C-ACT), Fakulti
Teknologi Maklumat dan Komunikasi (FTMK), Universiti
Teknikal Malaysia Melaka for giving opportunity and
tools to conduct this study.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 2, NO. 2, PP. 1-9, NOVEMBER 2020 9

REFERENCES
[1] Aboutorabi, Seyyed & Rezapour, Mehdi & Moradi, Milad & Ghadiri,

Nasser. (2015). Performance evaluation of SQL and MongoDB
databases for big e-commerce data.

[2] Bart Baas (2012). Geographical Information Management and
Applications [online] Available at:
http://www.gdmc.nl/publications/2012/Neo4j_versus_PostGIS.pdf
[Accessed 18 Apr. 2018].

[3] Dias. K, Ramacher. M, Shaft. U, Venkataramani. V, Wood. G. (2005)
Automatic Performance Diagnosis and Tuning in Oracle. Proceedings
of the CIDR Conference. Docendo. p. 196.

[4] Docs.oracle.com. (2018). Measuring Database Performance. [online]
Available at:
https://docs.oracle.com/database/121/TGDBA/measure_db.htm#TG
DBA146 [Accessed 1 Jun. 2018].

[5] George Antoniou, Evaluation of Major NoSQL Databases, Master
Thesis, The University of Edinburgh, 2016.

[6] Gorton, Ian & Klein, John. (2015). Performance Evaluation of NoSQL
Databases: A Case Study.

[7] Harish Balasubramanian. (2014). Performance Analysis of Scalable
SQL and NOSQL Databases: A Quantitative Approach.

[8] Hadjigeorgiou, C. (2013). RDBMS vs NoSQL: Performance and
Scaling Comparison.

[9] Mehfooz, Muhammad Arslan. SenseMark – A database benchmark
and evaluation study for alternative databases for Sensor data and IoT.
Master thesis, University of Oslo, 2016

[10] Reinhardt, Wolfgang & Schmid, Stephan & Gálicz, Eszter. (2015).
Performance investigation of selected SQL and NoSQL databases.

[11] Ruottinen, P. (2015). Database architecture design and performance
evaluation for Quality of Service measurements: Master's thesis.
University of Oulu.

[12] Sawyer, T. (1992). Doing your own Benchmark, in Benchmark
Handbook: For Database and Transaction Processing Systems, edited
by J Gray, San Francisco: Morgan Kaufmann Publishers Inc.

[13] Stephan Gerhard Schmid, Eszter Galicz, Wolfgang Reinhardt (2015),
WMS performance of selected SQL and NoSQL databases, Computer
ScienceInternational Conference on Military Technologies (ICMT)

[14] Toit, P.D. (2016). An evaluation of non-relational database
management systems as suitable storage for user generated text-based
content in a distributed environment.

Safiza Suhana Kamal Baharin,
raduated with Bachelor of Science in
(Geoinformatics) and Master of Science
in Geoinformatics from University of
Technology of Malaysia (UTM), Skudai.
She received her PhD in Information and

Communication Technology from Universiti Teknikal
Malaysia Melaka (UTeM). As senior lecturer in Software
Engineering Department, she explores various research
themes related to Database, software engineering and ICT,
specifically in Spatial Databases, Geoinformatics, and
Spatio-temporal Analysis.

Patience Obiageli Akunne,
graduated with Master of Computer
Science (Database Technology) in the
Faculty of Information and
Communication Technology, Universiti
Teknikal Malaysia Melaka (UTeM).

	00TOC
	01(01-08)
	02(09-16)
	03(17-22)
	04(23-26)
	05(27-32)
	06(33-40)

