
An Optimal Data Access Framework for Telerehabilitation System

25ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 26

An Optimal Data Access Framework for
Telerehabilitation System

Abdullah Muhammed2, Waidah Ismail1,3*, Siti Nabilah Basarang1, Ali Y. Aldailamy2, Rimuljo

Hendradi3
1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan,

Malaysia.; waidah@usim.edu.my.
2 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM),

Serdang, Selangor, Malaysia.; a.aldailamy7@gmail.com; abdullah@upm.edu.my
3Information System Study Program, Faculty Science and Technology, Universitas Airlangga,

Kampus C, Surabaya, Indonesia; rimuljohendradi@fst.unair.ac.id
Corresponding author: waidah@usim.edu.my

Abstract—In the telerehabilitation system, the statistical data of the
patients’ movement are stored in the temporary storage and
synchronised to the storage service of online cloud data. Application
providers faced a problem in reducing the monetary cost of the whole
cloud service and reducing the footprint of the main memory space. In
addition, users encounter long latency when the required data need to
be read from the cloud via the internet and the hard disk drive (HDD)
of the cloud servers. To solve this problem, an optimal data access
framework is presented to cache the statistical data of the patients in
the application server. The main memory database and cache use
internal tracking in the main memory to track records that are not
accessed by transferring the data to the disk. This mechanism retains
the keys and all indexed fields of evicted records in the main memory
which prevents potential memory space savings for the application that
have many keys and secondary indexes. Therefore, to overcome the
mentioned problems, the cloud database is categorised into three
partitions (hot, warm, cold). In addition, a cache memory image in the
application server is provided for the hot partition of the cloud
database. The use of cache memory image reduces the number of
reading operations from the cloud and saves the space of the main
memory. The experimental results showed that the proposed
framework can produce good quality solutions by utilising the main
memory space and reducing the latency and read operations from the
cloud that lead to reducing the monetary costs.

Index Terms— Rehabilitation system, exergame, cloud computing,
DBaaS, cache memory.

I. INTRODUCTION T There has been a drastic increase of data in the science
field, particularly in the health care field. It is believed that the
massive data in health care is the result of the advancements in
health care technologies [1, 2]. Tele-rehabilitation is one of the
important branches of health care in helping patients to restore
the highest level of quality, independence, and function of life
after certain disabilities [3, 4]. Tele-rehabilitation is defined as an
alternative against the usual rehabilitation service which helps
patients in rural areas to get access to less service that is practical
concerning logistics and costs in a controlled environment. It is
including the usage of mobile phones or other wireless devices
as applied to rehabilitation exercises. Applications or software of
such include exercises in games, treatment monitoring based on
their rehabilitation progress and data analysis [5-7].

Valentina et al. [8] introduced virtual rehabilitation (VR) that
stores, processes, and analyses massive data to monitor the
improvement of patients. The advancements in data management
systems such as cloud computing and virtualisation allow the
development of systems that provide effective storage and
manipulate a large amount of data [9-11].

In the cloud-based systems, the results of the patients’
exergames are uploaded on cloud and the therapist can access the
patients’ information and assess their movement improvements.
There are two-fold obstacles when transferring data from the
cloud to the application server namely latency and read cost from
cloud [13-15]. The latency problem is due to reading the full
history of patients’ statistical data from the cloud. Furthermore,
cumulative analysis has to read massive statistical data from the
cloud which is time-consuming for the end-users. When the
statistical data of a patient is required for analysis, a read
operation for all patient statistical data is usually sent to the cloud
that can lead to the data retrieving cost problem [16]. According
to Mansouri et al [17] and Zhang et al. [18], the monetary cost is
charged for the get operation and network consumption when
reading patient statistical data from the cloud. Therefore, the
more the data is read from the cloud, the more monetary cost is
charged.

The aforementioned problems can be solved by caching the
statistical data of the patients in the application server. There are
two levels of caching in the application server, namely hard disk
drive (HDD) and memory caching [19, 20]. Regardless of the
type of HDD (e.g. SATA or SSD), reading and writing
operations on HDD are very slow in comparison with memory
[21]. Thus, the cache memory copy of the stored data in the HDD
can enhance the performance [22]. The cache memory copy
allows the analysis application to read data directly from the local
memory that reduces the latency when reading the data via the
internet from the cloud hard disks. Reading the data from the
memory is 1,000 times faster than reading from HDD [20].
Therefore, keeping the data in the memory can minimise the
latency by reading the data that are stored in the hard disk.
Besides that, reducing the number of reading operations from the
cloud can minimise the overall cost of the cloud service.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 26

An Optimal Data Access Framework for
Telerehabilitation System

Abdullah Muhammed2, Waidah Ismail1,3*, Siti Nabilah Basarang1, Ali Y. Aldailamy2, Rimuljo

Hendradi3
1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan,

Malaysia.; waidah@usim.edu.my.
2 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM),

Serdang, Selangor, Malaysia.; a.aldailamy7@gmail.com; abdullah@upm.edu.my
3Information System Study Program, Faculty Science and Technology, Universitas Airlangga,

Kampus C, Surabaya, Indonesia; rimuljohendradi@fst.unair.ac.id
Corresponding author: waidah@usim.edu.my

Abstract—In the telerehabilitation system, the statistical data of the
patients’ movement are stored in the temporary storage and
synchronised to the storage service of online cloud data. Application
providers faced a problem in reducing the monetary cost of the whole
cloud service and reducing the footprint of the main memory space. In
addition, users encounter long latency when the required data need to
be read from the cloud via the internet and the hard disk drive (HDD)
of the cloud servers. To solve this problem, an optimal data access
framework is presented to cache the statistical data of the patients in
the application server. The main memory database and cache use
internal tracking in the main memory to track records that are not
accessed by transferring the data to the disk. This mechanism retains
the keys and all indexed fields of evicted records in the main memory
which prevents potential memory space savings for the application that
have many keys and secondary indexes. Therefore, to overcome the
mentioned problems, the cloud database is categorised into three
partitions (hot, warm, cold). In addition, a cache memory image in the
application server is provided for the hot partition of the cloud
database. The use of cache memory image reduces the number of
reading operations from the cloud and saves the space of the main
memory. The experimental results showed that the proposed
framework can produce good quality solutions by utilising the main
memory space and reducing the latency and read operations from the
cloud that lead to reducing the monetary costs.

Index Terms— Rehabilitation system, exergame, cloud computing,
DBaaS, cache memory.

I. INTRODUCTION T There has been a drastic increase of data in the science
field, particularly in the health care field. It is believed that the
massive data in health care is the result of the advancements in
health care technologies [1, 2]. Tele-rehabilitation is one of the
important branches of health care in helping patients to restore
the highest level of quality, independence, and function of life
after certain disabilities [3, 4]. Tele-rehabilitation is defined as an
alternative against the usual rehabilitation service which helps
patients in rural areas to get access to less service that is practical
concerning logistics and costs in a controlled environment. It is
including the usage of mobile phones or other wireless devices
as applied to rehabilitation exercises. Applications or software of
such include exercises in games, treatment monitoring based on
their rehabilitation progress and data analysis [5-7].

Valentina et al. [8] introduced virtual rehabilitation (VR) that
stores, processes, and analyses massive data to monitor the
improvement of patients. The advancements in data management
systems such as cloud computing and virtualisation allow the
development of systems that provide effective storage and
manipulate a large amount of data [9-11].

In the cloud-based systems, the results of the patients’
exergames are uploaded on cloud and the therapist can access the
patients’ information and assess their movement improvements.
There are two-fold obstacles when transferring data from the
cloud to the application server namely latency and read cost from
cloud [13-15]. The latency problem is due to reading the full
history of patients’ statistical data from the cloud. Furthermore,
cumulative analysis has to read massive statistical data from the
cloud which is time-consuming for the end-users. When the
statistical data of a patient is required for analysis, a read
operation for all patient statistical data is usually sent to the cloud
that can lead to the data retrieving cost problem [16]. According
to Mansouri et al [17] and Zhang et al. [18], the monetary cost is
charged for the get operation and network consumption when
reading patient statistical data from the cloud. Therefore, the
more the data is read from the cloud, the more monetary cost is
charged.

The aforementioned problems can be solved by caching the
statistical data of the patients in the application server. There are
two levels of caching in the application server, namely hard disk
drive (HDD) and memory caching [19, 20]. Regardless of the
type of HDD (e.g. SATA or SSD), reading and writing
operations on HDD are very slow in comparison with memory
[21]. Thus, the cache memory copy of the stored data in the HDD
can enhance the performance [22]. The cache memory copy
allows the analysis application to read data directly from the local
memory that reduces the latency when reading the data via the
internet from the cloud hard disks. Reading the data from the
memory is 1,000 times faster than reading from HDD [20].
Therefore, keeping the data in the memory can minimise the
latency by reading the data that are stored in the hard disk.
Besides that, reducing the number of reading operations from the
cloud can minimise the overall cost of the cloud service.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 26

An Optimal Data Access Framework for
Telerehabilitation System

Abdullah Muhammed2, Waidah Ismail1,3*, Siti Nabilah Basarang1, Ali Y. Aldailamy2, Rimuljo

Hendradi3
1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan,

Malaysia.; waidah@usim.edu.my.
2 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM),

Serdang, Selangor, Malaysia.; a.aldailamy7@gmail.com; abdullah@upm.edu.my
3Information System Study Program, Faculty Science and Technology, Universitas Airlangga,

Kampus C, Surabaya, Indonesia; rimuljohendradi@fst.unair.ac.id
Corresponding author: waidah@usim.edu.my

Abstract—In the telerehabilitation system, the statistical data of the
patients’ movement are stored in the temporary storage and
synchronised to the storage service of online cloud data. Application
providers faced a problem in reducing the monetary cost of the whole
cloud service and reducing the footprint of the main memory space. In
addition, users encounter long latency when the required data need to
be read from the cloud via the internet and the hard disk drive (HDD)
of the cloud servers. To solve this problem, an optimal data access
framework is presented to cache the statistical data of the patients in
the application server. The main memory database and cache use
internal tracking in the main memory to track records that are not
accessed by transferring the data to the disk. This mechanism retains
the keys and all indexed fields of evicted records in the main memory
which prevents potential memory space savings for the application that
have many keys and secondary indexes. Therefore, to overcome the
mentioned problems, the cloud database is categorised into three
partitions (hot, warm, cold). In addition, a cache memory image in the
application server is provided for the hot partition of the cloud
database. The use of cache memory image reduces the number of
reading operations from the cloud and saves the space of the main
memory. The experimental results showed that the proposed
framework can produce good quality solutions by utilising the main
memory space and reducing the latency and read operations from the
cloud that lead to reducing the monetary costs.

Index Terms— Rehabilitation system, exergame, cloud computing,
DBaaS, cache memory.

I. INTRODUCTION T There has been a drastic increase of data in the science
field, particularly in the health care field. It is believed that the
massive data in health care is the result of the advancements in
health care technologies [1, 2]. Tele-rehabilitation is one of the
important branches of health care in helping patients to restore
the highest level of quality, independence, and function of life
after certain disabilities [3, 4]. Tele-rehabilitation is defined as an
alternative against the usual rehabilitation service which helps
patients in rural areas to get access to less service that is practical
concerning logistics and costs in a controlled environment. It is
including the usage of mobile phones or other wireless devices
as applied to rehabilitation exercises. Applications or software of
such include exercises in games, treatment monitoring based on
their rehabilitation progress and data analysis [5-7].

Valentina et al. [8] introduced virtual rehabilitation (VR) that
stores, processes, and analyses massive data to monitor the
improvement of patients. The advancements in data management
systems such as cloud computing and virtualisation allow the
development of systems that provide effective storage and
manipulate a large amount of data [9-11].

In the cloud-based systems, the results of the patients’
exergames are uploaded on cloud and the therapist can access the
patients’ information and assess their movement improvements.
There are two-fold obstacles when transferring data from the
cloud to the application server namely latency and read cost from
cloud [13-15]. The latency problem is due to reading the full
history of patients’ statistical data from the cloud. Furthermore,
cumulative analysis has to read massive statistical data from the
cloud which is time-consuming for the end-users. When the
statistical data of a patient is required for analysis, a read
operation for all patient statistical data is usually sent to the cloud
that can lead to the data retrieving cost problem [16]. According
to Mansouri et al [17] and Zhang et al. [18], the monetary cost is
charged for the get operation and network consumption when
reading patient statistical data from the cloud. Therefore, the
more the data is read from the cloud, the more monetary cost is
charged.

The aforementioned problems can be solved by caching the
statistical data of the patients in the application server. There are
two levels of caching in the application server, namely hard disk
drive (HDD) and memory caching [19, 20]. Regardless of the
type of HDD (e.g. SATA or SSD), reading and writing
operations on HDD are very slow in comparison with memory
[21]. Thus, the cache memory copy of the stored data in the HDD
can enhance the performance [22]. The cache memory copy
allows the analysis application to read data directly from the local
memory that reduces the latency when reading the data via the
internet from the cloud hard disks. Reading the data from the
memory is 1,000 times faster than reading from HDD [20].
Therefore, keeping the data in the memory can minimise the
latency by reading the data that are stored in the hard disk.
Besides that, reducing the number of reading operations from the
cloud can minimise the overall cost of the cloud service.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 26

An Optimal Data Access Framework for
Telerehabilitation System

Abdullah Muhammed2, Waidah Ismail1,3*, Siti Nabilah Basarang1, Ali Y. Aldailamy2, Rimuljo

Hendradi3
1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan,

Malaysia.; waidah@usim.edu.my.
2 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM),

Serdang, Selangor, Malaysia.; a.aldailamy7@gmail.com; abdullah@upm.edu.my
3Information System Study Program, Faculty Science and Technology, Universitas Airlangga,

Kampus C, Surabaya, Indonesia; rimuljohendradi@fst.unair.ac.id
Corresponding author: waidah@usim.edu.my

Abstract—In the telerehabilitation system, the statistical data of the
patients’ movement are stored in the temporary storage and
synchronised to the storage service of online cloud data. Application
providers faced a problem in reducing the monetary cost of the whole
cloud service and reducing the footprint of the main memory space. In
addition, users encounter long latency when the required data need to
be read from the cloud via the internet and the hard disk drive (HDD)
of the cloud servers. To solve this problem, an optimal data access
framework is presented to cache the statistical data of the patients in
the application server. The main memory database and cache use
internal tracking in the main memory to track records that are not
accessed by transferring the data to the disk. This mechanism retains
the keys and all indexed fields of evicted records in the main memory
which prevents potential memory space savings for the application that
have many keys and secondary indexes. Therefore, to overcome the
mentioned problems, the cloud database is categorised into three
partitions (hot, warm, cold). In addition, a cache memory image in the
application server is provided for the hot partition of the cloud
database. The use of cache memory image reduces the number of
reading operations from the cloud and saves the space of the main
memory. The experimental results showed that the proposed
framework can produce good quality solutions by utilising the main
memory space and reducing the latency and read operations from the
cloud that lead to reducing the monetary costs.

Index Terms— Rehabilitation system, exergame, cloud computing,
DBaaS, cache memory.

I. INTRODUCTION T There has been a drastic increase of data in the science
field, particularly in the health care field. It is believed that the
massive data in health care is the result of the advancements in
health care technologies [1, 2]. Tele-rehabilitation is one of the
important branches of health care in helping patients to restore
the highest level of quality, independence, and function of life
after certain disabilities [3, 4]. Tele-rehabilitation is defined as an
alternative against the usual rehabilitation service which helps
patients in rural areas to get access to less service that is practical
concerning logistics and costs in a controlled environment. It is
including the usage of mobile phones or other wireless devices
as applied to rehabilitation exercises. Applications or software of
such include exercises in games, treatment monitoring based on
their rehabilitation progress and data analysis [5-7].

Valentina et al. [8] introduced virtual rehabilitation (VR) that
stores, processes, and analyses massive data to monitor the
improvement of patients. The advancements in data management
systems such as cloud computing and virtualisation allow the
development of systems that provide effective storage and
manipulate a large amount of data [9-11].

In the cloud-based systems, the results of the patients’
exergames are uploaded on cloud and the therapist can access the
patients’ information and assess their movement improvements.
There are two-fold obstacles when transferring data from the
cloud to the application server namely latency and read cost from
cloud [13-15]. The latency problem is due to reading the full
history of patients’ statistical data from the cloud. Furthermore,
cumulative analysis has to read massive statistical data from the
cloud which is time-consuming for the end-users. When the
statistical data of a patient is required for analysis, a read
operation for all patient statistical data is usually sent to the cloud
that can lead to the data retrieving cost problem [16]. According
to Mansouri et al [17] and Zhang et al. [18], the monetary cost is
charged for the get operation and network consumption when
reading patient statistical data from the cloud. Therefore, the
more the data is read from the cloud, the more monetary cost is
charged.

The aforementioned problems can be solved by caching the
statistical data of the patients in the application server. There are
two levels of caching in the application server, namely hard disk
drive (HDD) and memory caching [19, 20]. Regardless of the
type of HDD (e.g. SATA or SSD), reading and writing
operations on HDD are very slow in comparison with memory
[21]. Thus, the cache memory copy of the stored data in the HDD
can enhance the performance [22]. The cache memory copy
allows the analysis application to read data directly from the local
memory that reduces the latency when reading the data via the
internet from the cloud hard disks. Reading the data from the
memory is 1,000 times faster than reading from HDD [20].
Therefore, keeping the data in the memory can minimise the
latency by reading the data that are stored in the hard disk.
Besides that, reducing the number of reading operations from the
cloud can minimise the overall cost of the cloud service.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 27

Moreover, in the memory cache, the available main memory
is insufficient to store a large database, which is the main
problem of the technique. The problem can be overcome using a
memory eviction algorithm to manage the main memory space
allocated to the cache [23]. The eviction algorithm transfers some
of data to other space for new records and selects which data
should be kept and release to the disk in reducing the memory
footprint. Examples of the eviction algorithms are least-recently
used (LRU) [24] and least frequently used (LFU) [25]. However,
some issues make the eviction algorithms less efficient in terms
of performance and memory size management [26-28]. Firstly,
the cache eviction algorithm uses an internal tracking mechanism
to identify records, which are not accessed for eviction. The
cache keeps the corresponding internal tracking for subsequent
tracking even after removing the records that were not accessed
from memory. This internal tracking takes up memory space and
charges extra cost on memory management. Second, all available
database caching and cache memory database systems retain the
keys and indexed fields of the evicted records. This step reduces
potential memory capacity for platforms with many secondary
indexed fields.

In order to tackle these issues, the transferred data in the main
memory should be filtered in the database of the disk. Therefore,
in this study, the database is divided into three partitions
according to the status of the patient as follows: 1) hot/active data
that belong to active patients; 2) warm/inactive data that belong
to the patients who are not currently active or have been
discharged; and 3) cold/dead data that belong to the patient with
inactive status; for example, dead patients. Only the data that
belong to hot partition were moved to the main memory. The data
of the patients are moved to a different partition in the database
according to the new status and the change is synchronised to the
main memory copy.

In summation, in order to help fast retrieval of the medical data
in the huge dataset, an optimal data access framework is
proposed in this paper. In the presented scheme, in order to solve
the delay and reading cost problems, caching technique is
performed on the statistical data. In HDD caching technique, in
order to overcome the latency problem in reading and writing
operations on HDD, the proposed technique uses a cache
memory copy of the stored data in the HDD, which leads to
reduce latency and the data reading monetary cost. On the other
hand, to tackle the insufficient main memory problem in the
memory caching and to manage the main memory space
allocated to the cache, the eviction algorithm is utilized. Internal
tracking is considered as a drawback in eviction algorithms,
which can be overcome by partitioning the database based on the
patients’ status. The main contributions of the proposed scheme
are as follows:

 i. Unlike the previous cloud-based scheme, in this paper,
the statistical data of the patients are cached in the application
server, which leads to overcome the delay problem and reduce
the monetary costs when downloading data to the application
server from the cloud.

ii. Unlike the previous works, the cache memory image of
the hot partition in the application server-side is utilized which

leads to improve database access time and lessen the number of
reading operations issued to the cloud.

The subsequent sections of this paper are as follows. Section
2 reviews the related works. Section 3 presents the methodology.
The mathematical model is presented in section 4. Section 5
presents the dataset, experiment setup, and benchmarking results.
Section 6 provides the discussions on the results. Section 7
summarises the findings.

II. RELATED WORK

In the last decades, several schemes have been proposed to Goli-
Malekabadi et al. [12] suggested a cumulative analysis of data to
define the best procedure for a group of patients that can find
effective treatments, identify unknown relationships, recognise
new patterns, and make universal decisions. Cumulative analysis
requires a great amount of data movements from the cloud to the
application server (analysis server), which processes the data and
produces cumulative results.
In [51], authors claimed that load balancing is a technique of
distributing the loads among various virtual machines to
minimize the response time, minimize the cost, minimize the
resource utilization, and minimize the overhead. They attempted
to experimentally verify how to minimize the response time and
processing time through the tool named cloud analyst.
In [52], a cloud robotic system was proposed to provide an
Internet-based process for upper-limb rehabilitation with
multimodal interaction. Is such system, the therapist can
remotely supervise the patient to exercise and set the
rehabilitation training mode, therapy game level, and control the
parameters of rehabilitation robot. The physiotherapist can also
on-line evaluate the current performance of the patients
according to their history of data, the dialogue results and the
advising from the central server over networks. Based on the
evaluation results, the proposed system is cost-efficient and more
convenient for both the patients and the therapist.
In addition, a rehabilitation training and administration system
(TAS) for upper limb rehabilitation robot is presented in [53].
Patient information interfaces are introduced so that
physiotherapists can collect, store, retrieve and exchange
patients’ information electronically. likewise, the authors have
programmed a passive training method and virtual reality
exergame in order to stimulate users’ enthusiasm in training
process. Based on the evaluation results, TAS could improve the
efficiency of physiotherapies with providing a feasible solution
to the shortage of rehabilitation therapists.
Moreover, the authors in [54] developed a novel context-based
adaptive home-based rehabilitation (CAHR) framework which
aimed to optimize recovery based on patient's performance and
ambient conditions. In addition, the authors modeled the
adaptation mathematically in order to configure the rehabilitation
task based on patients’ conditions. Results indicated that the
CAHR can beneficial by improving the patients’ performance.
Furthermore, a tele-rehabilitation system was presented in [55]
to enhance community rehabilitation for patients who are
discharged early from the hospital. Likewise, in [56], a self-
adaptive and hybrid mode with both patient self-management
and doctor remote diagnosis based telemedicine framework was

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 26

An Optimal Data Access Framework for
Telerehabilitation System

Abdullah Muhammed2, Waidah Ismail1,3*, Siti Nabilah Basarang1, Ali Y. Aldailamy2, Rimuljo

Hendradi3
1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan,

Malaysia.; waidah@usim.edu.my.
2 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM),

Serdang, Selangor, Malaysia.; a.aldailamy7@gmail.com; abdullah@upm.edu.my
3Information System Study Program, Faculty Science and Technology, Universitas Airlangga,

Kampus C, Surabaya, Indonesia; rimuljohendradi@fst.unair.ac.id
Corresponding author: waidah@usim.edu.my

Abstract—In the telerehabilitation system, the statistical data of the
patients’ movement are stored in the temporary storage and
synchronised to the storage service of online cloud data. Application
providers faced a problem in reducing the monetary cost of the whole
cloud service and reducing the footprint of the main memory space. In
addition, users encounter long latency when the required data need to
be read from the cloud via the internet and the hard disk drive (HDD)
of the cloud servers. To solve this problem, an optimal data access
framework is presented to cache the statistical data of the patients in
the application server. The main memory database and cache use
internal tracking in the main memory to track records that are not
accessed by transferring the data to the disk. This mechanism retains
the keys and all indexed fields of evicted records in the main memory
which prevents potential memory space savings for the application that
have many keys and secondary indexes. Therefore, to overcome the
mentioned problems, the cloud database is categorised into three
partitions (hot, warm, cold). In addition, a cache memory image in the
application server is provided for the hot partition of the cloud
database. The use of cache memory image reduces the number of
reading operations from the cloud and saves the space of the main
memory. The experimental results showed that the proposed
framework can produce good quality solutions by utilising the main
memory space and reducing the latency and read operations from the
cloud that lead to reducing the monetary costs.

Index Terms— Rehabilitation system, exergame, cloud computing,
DBaaS, cache memory.

I. INTRODUCTION T There has been a drastic increase of data in the science
field, particularly in the health care field. It is believed that the
massive data in health care is the result of the advancements in
health care technologies [1, 2]. Tele-rehabilitation is one of the
important branches of health care in helping patients to restore
the highest level of quality, independence, and function of life
after certain disabilities [3, 4]. Tele-rehabilitation is defined as an
alternative against the usual rehabilitation service which helps
patients in rural areas to get access to less service that is practical
concerning logistics and costs in a controlled environment. It is
including the usage of mobile phones or other wireless devices
as applied to rehabilitation exercises. Applications or software of
such include exercises in games, treatment monitoring based on
their rehabilitation progress and data analysis [5-7].

Valentina et al. [8] introduced virtual rehabilitation (VR) that
stores, processes, and analyses massive data to monitor the
improvement of patients. The advancements in data management
systems such as cloud computing and virtualisation allow the
development of systems that provide effective storage and
manipulate a large amount of data [9-11].

In the cloud-based systems, the results of the patients’
exergames are uploaded on cloud and the therapist can access the
patients’ information and assess their movement improvements.
There are two-fold obstacles when transferring data from the
cloud to the application server namely latency and read cost from
cloud [13-15]. The latency problem is due to reading the full
history of patients’ statistical data from the cloud. Furthermore,
cumulative analysis has to read massive statistical data from the
cloud which is time-consuming for the end-users. When the
statistical data of a patient is required for analysis, a read
operation for all patient statistical data is usually sent to the cloud
that can lead to the data retrieving cost problem [16]. According
to Mansouri et al [17] and Zhang et al. [18], the monetary cost is
charged for the get operation and network consumption when
reading patient statistical data from the cloud. Therefore, the
more the data is read from the cloud, the more monetary cost is
charged.

The aforementioned problems can be solved by caching the
statistical data of the patients in the application server. There are
two levels of caching in the application server, namely hard disk
drive (HDD) and memory caching [19, 20]. Regardless of the
type of HDD (e.g. SATA or SSD), reading and writing
operations on HDD are very slow in comparison with memory
[21]. Thus, the cache memory copy of the stored data in the HDD
can enhance the performance [22]. The cache memory copy
allows the analysis application to read data directly from the local
memory that reduces the latency when reading the data via the
internet from the cloud hard disks. Reading the data from the
memory is 1,000 times faster than reading from HDD [20].
Therefore, keeping the data in the memory can minimise the
latency by reading the data that are stored in the hard disk.
Besides that, reducing the number of reading operations from the
cloud can minimise the overall cost of the cloud service.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 26

An Optimal Data Access Framework for
Telerehabilitation System

Abdullah Muhammed2, Waidah Ismail1,3*, Siti Nabilah Basarang1, Ali Y. Aldailamy2, Rimuljo

Hendradi3
1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan,

Malaysia.; waidah@usim.edu.my.
2 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, (UPM),

Serdang, Selangor, Malaysia.; a.aldailamy7@gmail.com; abdullah@upm.edu.my
3Information System Study Program, Faculty Science and Technology, Universitas Airlangga,

Kampus C, Surabaya, Indonesia; rimuljohendradi@fst.unair.ac.id
Corresponding author: waidah@usim.edu.my

Abstract—In the telerehabilitation system, the statistical data of the
patients’ movement are stored in the temporary storage and
synchronised to the storage service of online cloud data. Application
providers faced a problem in reducing the monetary cost of the whole
cloud service and reducing the footprint of the main memory space. In
addition, users encounter long latency when the required data need to
be read from the cloud via the internet and the hard disk drive (HDD)
of the cloud servers. To solve this problem, an optimal data access
framework is presented to cache the statistical data of the patients in
the application server. The main memory database and cache use
internal tracking in the main memory to track records that are not
accessed by transferring the data to the disk. This mechanism retains
the keys and all indexed fields of evicted records in the main memory
which prevents potential memory space savings for the application that
have many keys and secondary indexes. Therefore, to overcome the
mentioned problems, the cloud database is categorised into three
partitions (hot, warm, cold). In addition, a cache memory image in the
application server is provided for the hot partition of the cloud
database. The use of cache memory image reduces the number of
reading operations from the cloud and saves the space of the main
memory. The experimental results showed that the proposed
framework can produce good quality solutions by utilising the main
memory space and reducing the latency and read operations from the
cloud that lead to reducing the monetary costs.

Index Terms— Rehabilitation system, exergame, cloud computing,
DBaaS, cache memory.

I. INTRODUCTION T There has been a drastic increase of data in the science
field, particularly in the health care field. It is believed that the
massive data in health care is the result of the advancements in
health care technologies [1, 2]. Tele-rehabilitation is one of the
important branches of health care in helping patients to restore
the highest level of quality, independence, and function of life
after certain disabilities [3, 4]. Tele-rehabilitation is defined as an
alternative against the usual rehabilitation service which helps
patients in rural areas to get access to less service that is practical
concerning logistics and costs in a controlled environment. It is
including the usage of mobile phones or other wireless devices
as applied to rehabilitation exercises. Applications or software of
such include exercises in games, treatment monitoring based on
their rehabilitation progress and data analysis [5-7].

Valentina et al. [8] introduced virtual rehabilitation (VR) that
stores, processes, and analyses massive data to monitor the
improvement of patients. The advancements in data management
systems such as cloud computing and virtualisation allow the
development of systems that provide effective storage and
manipulate a large amount of data [9-11].

In the cloud-based systems, the results of the patients’
exergames are uploaded on cloud and the therapist can access the
patients’ information and assess their movement improvements.
There are two-fold obstacles when transferring data from the
cloud to the application server namely latency and read cost from
cloud [13-15]. The latency problem is due to reading the full
history of patients’ statistical data from the cloud. Furthermore,
cumulative analysis has to read massive statistical data from the
cloud which is time-consuming for the end-users. When the
statistical data of a patient is required for analysis, a read
operation for all patient statistical data is usually sent to the cloud
that can lead to the data retrieving cost problem [16]. According
to Mansouri et al [17] and Zhang et al. [18], the monetary cost is
charged for the get operation and network consumption when
reading patient statistical data from the cloud. Therefore, the
more the data is read from the cloud, the more monetary cost is
charged.

The aforementioned problems can be solved by caching the
statistical data of the patients in the application server. There are
two levels of caching in the application server, namely hard disk
drive (HDD) and memory caching [19, 20]. Regardless of the
type of HDD (e.g. SATA or SSD), reading and writing
operations on HDD are very slow in comparison with memory
[21]. Thus, the cache memory copy of the stored data in the HDD
can enhance the performance [22]. The cache memory copy
allows the analysis application to read data directly from the local
memory that reduces the latency when reading the data via the
internet from the cloud hard disks. Reading the data from the
memory is 1,000 times faster than reading from HDD [20].
Therefore, keeping the data in the memory can minimise the
latency by reading the data that are stored in the hard disk.
Besides that, reducing the number of reading operations from the
cloud can minimise the overall cost of the cloud service.

26

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 27

Moreover, in the memory cache, the available main memory
is insufficient to store a large database, which is the main
problem of the technique. The problem can be overcome using a
memory eviction algorithm to manage the main memory space
allocated to the cache [23]. The eviction algorithm transfers some
of data to other space for new records and selects which data
should be kept and release to the disk in reducing the memory
footprint. Examples of the eviction algorithms are least-recently
used (LRU) [24] and least frequently used (LFU) [25]. However,
some issues make the eviction algorithms less efficient in terms
of performance and memory size management [26-28]. Firstly,
the cache eviction algorithm uses an internal tracking mechanism
to identify records, which are not accessed for eviction. The
cache keeps the corresponding internal tracking for subsequent
tracking even after removing the records that were not accessed
from memory. This internal tracking takes up memory space and
charges extra cost on memory management. Second, all available
database caching and cache memory database systems retain the
keys and indexed fields of the evicted records. This step reduces
potential memory capacity for platforms with many secondary
indexed fields.

In order to tackle these issues, the transferred data in the main
memory should be filtered in the database of the disk. Therefore,
in this study, the database is divided into three partitions
according to the status of the patient as follows: 1) hot/active data
that belong to active patients; 2) warm/inactive data that belong
to the patients who are not currently active or have been
discharged; and 3) cold/dead data that belong to the patient with
inactive status; for example, dead patients. Only the data that
belong to hot partition were moved to the main memory. The data
of the patients are moved to a different partition in the database
according to the new status and the change is synchronised to the
main memory copy.

In summation, in order to help fast retrieval of the medical data
in the huge dataset, an optimal data access framework is
proposed in this paper. In the presented scheme, in order to solve
the delay and reading cost problems, caching technique is
performed on the statistical data. In HDD caching technique, in
order to overcome the latency problem in reading and writing
operations on HDD, the proposed technique uses a cache
memory copy of the stored data in the HDD, which leads to
reduce latency and the data reading monetary cost. On the other
hand, to tackle the insufficient main memory problem in the
memory caching and to manage the main memory space
allocated to the cache, the eviction algorithm is utilized. Internal
tracking is considered as a drawback in eviction algorithms,
which can be overcome by partitioning the database based on the
patients’ status. The main contributions of the proposed scheme
are as follows:

 i. Unlike the previous cloud-based scheme, in this paper,
the statistical data of the patients are cached in the application
server, which leads to overcome the delay problem and reduce
the monetary costs when downloading data to the application
server from the cloud.

ii. Unlike the previous works, the cache memory image of
the hot partition in the application server-side is utilized which

leads to improve database access time and lessen the number of
reading operations issued to the cloud.

The subsequent sections of this paper are as follows. Section
2 reviews the related works. Section 3 presents the methodology.
The mathematical model is presented in section 4. Section 5
presents the dataset, experiment setup, and benchmarking results.
Section 6 provides the discussions on the results. Section 7
summarises the findings.

II. RELATED WORK

In the last decades, several schemes have been proposed to Goli-
Malekabadi et al. [12] suggested a cumulative analysis of data to
define the best procedure for a group of patients that can find
effective treatments, identify unknown relationships, recognise
new patterns, and make universal decisions. Cumulative analysis
requires a great amount of data movements from the cloud to the
application server (analysis server), which processes the data and
produces cumulative results.
In [51], authors claimed that load balancing is a technique of
distributing the loads among various virtual machines to
minimize the response time, minimize the cost, minimize the
resource utilization, and minimize the overhead. They attempted
to experimentally verify how to minimize the response time and
processing time through the tool named cloud analyst.
In [52], a cloud robotic system was proposed to provide an
Internet-based process for upper-limb rehabilitation with
multimodal interaction. Is such system, the therapist can
remotely supervise the patient to exercise and set the
rehabilitation training mode, therapy game level, and control the
parameters of rehabilitation robot. The physiotherapist can also
on-line evaluate the current performance of the patients
according to their history of data, the dialogue results and the
advising from the central server over networks. Based on the
evaluation results, the proposed system is cost-efficient and more
convenient for both the patients and the therapist.
In addition, a rehabilitation training and administration system
(TAS) for upper limb rehabilitation robot is presented in [53].
Patient information interfaces are introduced so that
physiotherapists can collect, store, retrieve and exchange
patients’ information electronically. likewise, the authors have
programmed a passive training method and virtual reality
exergame in order to stimulate users’ enthusiasm in training
process. Based on the evaluation results, TAS could improve the
efficiency of physiotherapies with providing a feasible solution
to the shortage of rehabilitation therapists.
Moreover, the authors in [54] developed a novel context-based
adaptive home-based rehabilitation (CAHR) framework which
aimed to optimize recovery based on patient's performance and
ambient conditions. In addition, the authors modeled the
adaptation mathematically in order to configure the rehabilitation
task based on patients’ conditions. Results indicated that the
CAHR can beneficial by improving the patients’ performance.
Furthermore, a tele-rehabilitation system was presented in [55]
to enhance community rehabilitation for patients who are
discharged early from the hospital. Likewise, in [56], a self-
adaptive and hybrid mode with both patient self-management
and doctor remote diagnosis based telemedicine framework was

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 28

presented. The scheme included two parts: intelligent diagnosis
and real-time diagnosis. Generally, a patient could use intelligent
diagnosis to take a self-service diagnosis first, if the patient
satisfies output, real-time diagnosis is passed. Otherwise, the
patient could use real-time diagnosis to take a manual diagnosis.
The combination of intelligent way and real-time way reduced
doctor’s work amount in diagnosis.
Based on the aforementioned discussion, none of the previous
cloud-based schemes have utilized the cache memory, which
leads to occur the delay problem and increases the monetary
costs when transferring data from the cloud to the application
server. Therefore, presenting a feasible method to overcome the
aforementioned problem is vital. Accordingly, in this paper, an
optimal data access framework is presented to cache the
statistical data of the patients in the application server. Moreover,
in order to manage the main memory space allocated to the
cache, the memory eviction algorithm is utilized. However, in the
eviction algorithm, internal tracking is used which leads to
occupying the memory space and charges extra cost on memory
management. To overcome the mentioned drawback, the data
portioning approach is utilized.

III. METHODOLOGY

In this section, the proposed optimal data access framework is
presented. The schematic diagram of the proposed method is
shown in Figure 1.

A. Architecture of the proposed framework
The main utilized component of the proposed method consists

of medical interactive rehabilitation assistant (MIRA), MySQL
Database, and Apache Ignite. These components are described in
detail in the next sub-sections.

a. MIRA
MIRA is a healthcare solution that conducts the rehabilitation

process using a virtual reality technology [29, 30]. It is a game-
based solution designed to provide meaningful feedback such as
statistical data about the patients’ movements from the Kinect
device that is equipped with a motion-tracking sensor [31-33].
The sensor aids the system in capturing important attributes
(data) of the patients’ movements such as average percentage,
average speed, average acceleration, distance, and points for the
evaluation of their performance [34]. However, MIRA system
currently lacks the tools in providing a meaningful evaluation of
patients’ performance to the physiotherapist [32]. MIRA
produces a big amount of statistical data for every session. It
stores all the statistical data of patients’ movements into the
Microsoft Azure cloud [35]. An analysis application is needed to
read the statistical data frequently from the cloud for further
analysis to provide meaningful data. Therefore, this study
proposed a framework that provides an effective and efficient
patient data analysis module for better evaluation of patients’
performance such as performance prediction [12], preference
optimisation [13], and preference recommendation [14].

Fig.1. The schematic diagram of the proposed method

b. MySQL Database

MySQL DBMS is used to create databases in the separate
server called database server [36]. The database server has a
separate database for MIRA users to store the data retrieved
from MIRA cloud. The databases store images of the MIRA
cloud retrieved data that have many differences in their
structures as follows:
• Data retrieved from the MIRA cloud are normalised

and spread among multiple tables to eliminate
redundancy of the data.

• Fixed textual values such as gender, difficulty, and side
retrieved from the MIRA cloud are coded into numeric
values to reduce storage space occupied by text values.

• There are three tables for every entity in every database.
The tables present the status of the patients and they are
captioned by the statuses, namely hot, warm, and cold
tables which contain the data of active, inactive, and
dead patients, respectively. Therefore, the data of the
patients are moved in accordance with the patients’
status. The movement of patients’ data is further
discussed in the next sections.

c. MySQL Database

Apache Ignite is a cache memory computing framework
that develops a highly available and strongly consistent cache
memory database or cache [37, 38]. It is a high-performance
computing framework used for the cache memory processing
of large-scale and real-time data sets. It looks like a distributed
data storage that works as a cache memory database [37]. This
study used Apache Ignite to create the hot partition image in
the main memory of the application server after reading the
data from the MIRA cloud. The cache memory image of data
is used to cache the data of currently active patients to provide
better reading performance. The fast read allows real-time
analysis on preference recommender, preference
optimisations, and decision tree analysis.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 27

Moreover, in the memory cache, the available main memory
is insufficient to store a large database, which is the main
problem of the technique. The problem can be overcome using a
memory eviction algorithm to manage the main memory space
allocated to the cache [23]. The eviction algorithm transfers some
of data to other space for new records and selects which data
should be kept and release to the disk in reducing the memory
footprint. Examples of the eviction algorithms are least-recently
used (LRU) [24] and least frequently used (LFU) [25]. However,
some issues make the eviction algorithms less efficient in terms
of performance and memory size management [26-28]. Firstly,
the cache eviction algorithm uses an internal tracking mechanism
to identify records, which are not accessed for eviction. The
cache keeps the corresponding internal tracking for subsequent
tracking even after removing the records that were not accessed
from memory. This internal tracking takes up memory space and
charges extra cost on memory management. Second, all available
database caching and cache memory database systems retain the
keys and indexed fields of the evicted records. This step reduces
potential memory capacity for platforms with many secondary
indexed fields.

In order to tackle these issues, the transferred data in the main
memory should be filtered in the database of the disk. Therefore,
in this study, the database is divided into three partitions
according to the status of the patient as follows: 1) hot/active data
that belong to active patients; 2) warm/inactive data that belong
to the patients who are not currently active or have been
discharged; and 3) cold/dead data that belong to the patient with
inactive status; for example, dead patients. Only the data that
belong to hot partition were moved to the main memory. The data
of the patients are moved to a different partition in the database
according to the new status and the change is synchronised to the
main memory copy.

In summation, in order to help fast retrieval of the medical data
in the huge dataset, an optimal data access framework is
proposed in this paper. In the presented scheme, in order to solve
the delay and reading cost problems, caching technique is
performed on the statistical data. In HDD caching technique, in
order to overcome the latency problem in reading and writing
operations on HDD, the proposed technique uses a cache
memory copy of the stored data in the HDD, which leads to
reduce latency and the data reading monetary cost. On the other
hand, to tackle the insufficient main memory problem in the
memory caching and to manage the main memory space
allocated to the cache, the eviction algorithm is utilized. Internal
tracking is considered as a drawback in eviction algorithms,
which can be overcome by partitioning the database based on the
patients’ status. The main contributions of the proposed scheme
are as follows:

 i. Unlike the previous cloud-based scheme, in this paper,
the statistical data of the patients are cached in the application
server, which leads to overcome the delay problem and reduce
the monetary costs when downloading data to the application
server from the cloud.

ii. Unlike the previous works, the cache memory image of
the hot partition in the application server-side is utilized which

leads to improve database access time and lessen the number of
reading operations issued to the cloud.

The subsequent sections of this paper are as follows. Section
2 reviews the related works. Section 3 presents the methodology.
The mathematical model is presented in section 4. Section 5
presents the dataset, experiment setup, and benchmarking results.
Section 6 provides the discussions on the results. Section 7
summarises the findings.

II. RELATED WORK

In the last decades, several schemes have been proposed to Goli-
Malekabadi et al. [12] suggested a cumulative analysis of data to
define the best procedure for a group of patients that can find
effective treatments, identify unknown relationships, recognise
new patterns, and make universal decisions. Cumulative analysis
requires a great amount of data movements from the cloud to the
application server (analysis server), which processes the data and
produces cumulative results.
In [51], authors claimed that load balancing is a technique of
distributing the loads among various virtual machines to
minimize the response time, minimize the cost, minimize the
resource utilization, and minimize the overhead. They attempted
to experimentally verify how to minimize the response time and
processing time through the tool named cloud analyst.
In [52], a cloud robotic system was proposed to provide an
Internet-based process for upper-limb rehabilitation with
multimodal interaction. Is such system, the therapist can
remotely supervise the patient to exercise and set the
rehabilitation training mode, therapy game level, and control the
parameters of rehabilitation robot. The physiotherapist can also
on-line evaluate the current performance of the patients
according to their history of data, the dialogue results and the
advising from the central server over networks. Based on the
evaluation results, the proposed system is cost-efficient and more
convenient for both the patients and the therapist.
In addition, a rehabilitation training and administration system
(TAS) for upper limb rehabilitation robot is presented in [53].
Patient information interfaces are introduced so that
physiotherapists can collect, store, retrieve and exchange
patients’ information electronically. likewise, the authors have
programmed a passive training method and virtual reality
exergame in order to stimulate users’ enthusiasm in training
process. Based on the evaluation results, TAS could improve the
efficiency of physiotherapies with providing a feasible solution
to the shortage of rehabilitation therapists.
Moreover, the authors in [54] developed a novel context-based
adaptive home-based rehabilitation (CAHR) framework which
aimed to optimize recovery based on patient's performance and
ambient conditions. In addition, the authors modeled the
adaptation mathematically in order to configure the rehabilitation
task based on patients’ conditions. Results indicated that the
CAHR can beneficial by improving the patients’ performance.
Furthermore, a tele-rehabilitation system was presented in [55]
to enhance community rehabilitation for patients who are
discharged early from the hospital. Likewise, in [56], a self-
adaptive and hybrid mode with both patient self-management
and doctor remote diagnosis based telemedicine framework was

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 27

Moreover, in the memory cache, the available main memory
is insufficient to store a large database, which is the main
problem of the technique. The problem can be overcome using a
memory eviction algorithm to manage the main memory space
allocated to the cache [23]. The eviction algorithm transfers some
of data to other space for new records and selects which data
should be kept and release to the disk in reducing the memory
footprint. Examples of the eviction algorithms are least-recently
used (LRU) [24] and least frequently used (LFU) [25]. However,
some issues make the eviction algorithms less efficient in terms
of performance and memory size management [26-28]. Firstly,
the cache eviction algorithm uses an internal tracking mechanism
to identify records, which are not accessed for eviction. The
cache keeps the corresponding internal tracking for subsequent
tracking even after removing the records that were not accessed
from memory. This internal tracking takes up memory space and
charges extra cost on memory management. Second, all available
database caching and cache memory database systems retain the
keys and indexed fields of the evicted records. This step reduces
potential memory capacity for platforms with many secondary
indexed fields.

In order to tackle these issues, the transferred data in the main
memory should be filtered in the database of the disk. Therefore,
in this study, the database is divided into three partitions
according to the status of the patient as follows: 1) hot/active data
that belong to active patients; 2) warm/inactive data that belong
to the patients who are not currently active or have been
discharged; and 3) cold/dead data that belong to the patient with
inactive status; for example, dead patients. Only the data that
belong to hot partition were moved to the main memory. The data
of the patients are moved to a different partition in the database
according to the new status and the change is synchronised to the
main memory copy.

In summation, in order to help fast retrieval of the medical data
in the huge dataset, an optimal data access framework is
proposed in this paper. In the presented scheme, in order to solve
the delay and reading cost problems, caching technique is
performed on the statistical data. In HDD caching technique, in
order to overcome the latency problem in reading and writing
operations on HDD, the proposed technique uses a cache
memory copy of the stored data in the HDD, which leads to
reduce latency and the data reading monetary cost. On the other
hand, to tackle the insufficient main memory problem in the
memory caching and to manage the main memory space
allocated to the cache, the eviction algorithm is utilized. Internal
tracking is considered as a drawback in eviction algorithms,
which can be overcome by partitioning the database based on the
patients’ status. The main contributions of the proposed scheme
are as follows:

 i. Unlike the previous cloud-based scheme, in this paper,
the statistical data of the patients are cached in the application
server, which leads to overcome the delay problem and reduce
the monetary costs when downloading data to the application
server from the cloud.

ii. Unlike the previous works, the cache memory image of
the hot partition in the application server-side is utilized which

leads to improve database access time and lessen the number of
reading operations issued to the cloud.

The subsequent sections of this paper are as follows. Section
2 reviews the related works. Section 3 presents the methodology.
The mathematical model is presented in section 4. Section 5
presents the dataset, experiment setup, and benchmarking results.
Section 6 provides the discussions on the results. Section 7
summarises the findings.

II. RELATED WORK

In the last decades, several schemes have been proposed to Goli-
Malekabadi et al. [12] suggested a cumulative analysis of data to
define the best procedure for a group of patients that can find
effective treatments, identify unknown relationships, recognise
new patterns, and make universal decisions. Cumulative analysis
requires a great amount of data movements from the cloud to the
application server (analysis server), which processes the data and
produces cumulative results.
In [51], authors claimed that load balancing is a technique of
distributing the loads among various virtual machines to
minimize the response time, minimize the cost, minimize the
resource utilization, and minimize the overhead. They attempted
to experimentally verify how to minimize the response time and
processing time through the tool named cloud analyst.
In [52], a cloud robotic system was proposed to provide an
Internet-based process for upper-limb rehabilitation with
multimodal interaction. Is such system, the therapist can
remotely supervise the patient to exercise and set the
rehabilitation training mode, therapy game level, and control the
parameters of rehabilitation robot. The physiotherapist can also
on-line evaluate the current performance of the patients
according to their history of data, the dialogue results and the
advising from the central server over networks. Based on the
evaluation results, the proposed system is cost-efficient and more
convenient for both the patients and the therapist.
In addition, a rehabilitation training and administration system
(TAS) for upper limb rehabilitation robot is presented in [53].
Patient information interfaces are introduced so that
physiotherapists can collect, store, retrieve and exchange
patients’ information electronically. likewise, the authors have
programmed a passive training method and virtual reality
exergame in order to stimulate users’ enthusiasm in training
process. Based on the evaluation results, TAS could improve the
efficiency of physiotherapies with providing a feasible solution
to the shortage of rehabilitation therapists.
Moreover, the authors in [54] developed a novel context-based
adaptive home-based rehabilitation (CAHR) framework which
aimed to optimize recovery based on patient's performance and
ambient conditions. In addition, the authors modeled the
adaptation mathematically in order to configure the rehabilitation
task based on patients’ conditions. Results indicated that the
CAHR can beneficial by improving the patients’ performance.
Furthermore, a tele-rehabilitation system was presented in [55]
to enhance community rehabilitation for patients who are
discharged early from the hospital. Likewise, in [56], a self-
adaptive and hybrid mode with both patient self-management
and doctor remote diagnosis based telemedicine framework was

An Optimal Data Access Framework for Telerehabilitation System

27ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 28

presented. The scheme included two parts: intelligent diagnosis
and real-time diagnosis. Generally, a patient could use intelligent
diagnosis to take a self-service diagnosis first, if the patient
satisfies output, real-time diagnosis is passed. Otherwise, the
patient could use real-time diagnosis to take a manual diagnosis.
The combination of intelligent way and real-time way reduced
doctor’s work amount in diagnosis.
Based on the aforementioned discussion, none of the previous
cloud-based schemes have utilized the cache memory, which
leads to occur the delay problem and increases the monetary
costs when transferring data from the cloud to the application
server. Therefore, presenting a feasible method to overcome the
aforementioned problem is vital. Accordingly, in this paper, an
optimal data access framework is presented to cache the
statistical data of the patients in the application server. Moreover,
in order to manage the main memory space allocated to the
cache, the memory eviction algorithm is utilized. However, in the
eviction algorithm, internal tracking is used which leads to
occupying the memory space and charges extra cost on memory
management. To overcome the mentioned drawback, the data
portioning approach is utilized.

III. METHODOLOGY

In this section, the proposed optimal data access framework is
presented. The schematic diagram of the proposed method is
shown in Figure 1.

A. Architecture of the proposed framework
The main utilized component of the proposed method consists

of medical interactive rehabilitation assistant (MIRA), MySQL
Database, and Apache Ignite. These components are described in
detail in the next sub-sections.

a. MIRA
MIRA is a healthcare solution that conducts the rehabilitation

process using a virtual reality technology [29, 30]. It is a game-
based solution designed to provide meaningful feedback such as
statistical data about the patients’ movements from the Kinect
device that is equipped with a motion-tracking sensor [31-33].
The sensor aids the system in capturing important attributes
(data) of the patients’ movements such as average percentage,
average speed, average acceleration, distance, and points for the
evaluation of their performance [34]. However, MIRA system
currently lacks the tools in providing a meaningful evaluation of
patients’ performance to the physiotherapist [32]. MIRA
produces a big amount of statistical data for every session. It
stores all the statistical data of patients’ movements into the
Microsoft Azure cloud [35]. An analysis application is needed to
read the statistical data frequently from the cloud for further
analysis to provide meaningful data. Therefore, this study
proposed a framework that provides an effective and efficient
patient data analysis module for better evaluation of patients’
performance such as performance prediction [12], preference
optimisation [13], and preference recommendation [14].

Fig.1. The schematic diagram of the proposed method

b. MySQL Database

MySQL DBMS is used to create databases in the separate
server called database server [36]. The database server has a
separate database for MIRA users to store the data retrieved
from MIRA cloud. The databases store images of the MIRA
cloud retrieved data that have many differences in their
structures as follows:
• Data retrieved from the MIRA cloud are normalised

and spread among multiple tables to eliminate
redundancy of the data.

• Fixed textual values such as gender, difficulty, and side
retrieved from the MIRA cloud are coded into numeric
values to reduce storage space occupied by text values.

• There are three tables for every entity in every database.
The tables present the status of the patients and they are
captioned by the statuses, namely hot, warm, and cold
tables which contain the data of active, inactive, and
dead patients, respectively. Therefore, the data of the
patients are moved in accordance with the patients’
status. The movement of patients’ data is further
discussed in the next sections.

c. MySQL Database

Apache Ignite is a cache memory computing framework
that develops a highly available and strongly consistent cache
memory database or cache [37, 38]. It is a high-performance
computing framework used for the cache memory processing
of large-scale and real-time data sets. It looks like a distributed
data storage that works as a cache memory database [37]. This
study used Apache Ignite to create the hot partition image in
the main memory of the application server after reading the
data from the MIRA cloud. The cache memory image of data
is used to cache the data of currently active patients to provide
better reading performance. The fast read allows real-time
analysis on preference recommender, preference
optimisations, and decision tree analysis.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 28

presented. The scheme included two parts: intelligent diagnosis
and real-time diagnosis. Generally, a patient could use intelligent
diagnosis to take a self-service diagnosis first, if the patient
satisfies output, real-time diagnosis is passed. Otherwise, the
patient could use real-time diagnosis to take a manual diagnosis.
The combination of intelligent way and real-time way reduced
doctor’s work amount in diagnosis.
Based on the aforementioned discussion, none of the previous
cloud-based schemes have utilized the cache memory, which
leads to occur the delay problem and increases the monetary
costs when transferring data from the cloud to the application
server. Therefore, presenting a feasible method to overcome the
aforementioned problem is vital. Accordingly, in this paper, an
optimal data access framework is presented to cache the
statistical data of the patients in the application server. Moreover,
in order to manage the main memory space allocated to the
cache, the memory eviction algorithm is utilized. However, in the
eviction algorithm, internal tracking is used which leads to
occupying the memory space and charges extra cost on memory
management. To overcome the mentioned drawback, the data
portioning approach is utilized.

III. METHODOLOGY

In this section, the proposed optimal data access framework is
presented. The schematic diagram of the proposed method is
shown in Figure 1.

A. Architecture of the proposed framework
The main utilized component of the proposed method consists

of medical interactive rehabilitation assistant (MIRA), MySQL
Database, and Apache Ignite. These components are described in
detail in the next sub-sections.

a. MIRA
MIRA is a healthcare solution that conducts the rehabilitation

process using a virtual reality technology [29, 30]. It is a game-
based solution designed to provide meaningful feedback such as
statistical data about the patients’ movements from the Kinect
device that is equipped with a motion-tracking sensor [31-33].
The sensor aids the system in capturing important attributes
(data) of the patients’ movements such as average percentage,
average speed, average acceleration, distance, and points for the
evaluation of their performance [34]. However, MIRA system
currently lacks the tools in providing a meaningful evaluation of
patients’ performance to the physiotherapist [32]. MIRA
produces a big amount of statistical data for every session. It
stores all the statistical data of patients’ movements into the
Microsoft Azure cloud [35]. An analysis application is needed to
read the statistical data frequently from the cloud for further
analysis to provide meaningful data. Therefore, this study
proposed a framework that provides an effective and efficient
patient data analysis module for better evaluation of patients’
performance such as performance prediction [12], preference
optimisation [13], and preference recommendation [14].

Fig.1. The schematic diagram of the proposed method

b. MySQL Database

MySQL DBMS is used to create databases in the separate
server called database server [36]. The database server has a
separate database for MIRA users to store the data retrieved
from MIRA cloud. The databases store images of the MIRA
cloud retrieved data that have many differences in their
structures as follows:
• Data retrieved from the MIRA cloud are normalised

and spread among multiple tables to eliminate
redundancy of the data.

• Fixed textual values such as gender, difficulty, and side
retrieved from the MIRA cloud are coded into numeric
values to reduce storage space occupied by text values.

• There are three tables for every entity in every database.
The tables present the status of the patients and they are
captioned by the statuses, namely hot, warm, and cold
tables which contain the data of active, inactive, and
dead patients, respectively. Therefore, the data of the
patients are moved in accordance with the patients’
status. The movement of patients’ data is further
discussed in the next sections.

c. MySQL Database

Apache Ignite is a cache memory computing framework
that develops a highly available and strongly consistent cache
memory database or cache [37, 38]. It is a high-performance
computing framework used for the cache memory processing
of large-scale and real-time data sets. It looks like a distributed
data storage that works as a cache memory database [37]. This
study used Apache Ignite to create the hot partition image in
the main memory of the application server after reading the
data from the MIRA cloud. The cache memory image of data
is used to cache the data of currently active patients to provide
better reading performance. The fast read allows real-time
analysis on preference recommender, preference
optimisations, and decision tree analysis.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 28

presented. The scheme included two parts: intelligent diagnosis
and real-time diagnosis. Generally, a patient could use intelligent
diagnosis to take a self-service diagnosis first, if the patient
satisfies output, real-time diagnosis is passed. Otherwise, the
patient could use real-time diagnosis to take a manual diagnosis.
The combination of intelligent way and real-time way reduced
doctor’s work amount in diagnosis.
Based on the aforementioned discussion, none of the previous
cloud-based schemes have utilized the cache memory, which
leads to occur the delay problem and increases the monetary
costs when transferring data from the cloud to the application
server. Therefore, presenting a feasible method to overcome the
aforementioned problem is vital. Accordingly, in this paper, an
optimal data access framework is presented to cache the
statistical data of the patients in the application server. Moreover,
in order to manage the main memory space allocated to the
cache, the memory eviction algorithm is utilized. However, in the
eviction algorithm, internal tracking is used which leads to
occupying the memory space and charges extra cost on memory
management. To overcome the mentioned drawback, the data
portioning approach is utilized.

III. METHODOLOGY

In this section, the proposed optimal data access framework is
presented. The schematic diagram of the proposed method is
shown in Figure 1.

A. Architecture of the proposed framework
The main utilized component of the proposed method consists

of medical interactive rehabilitation assistant (MIRA), MySQL
Database, and Apache Ignite. These components are described in
detail in the next sub-sections.

a. MIRA
MIRA is a healthcare solution that conducts the rehabilitation

process using a virtual reality technology [29, 30]. It is a game-
based solution designed to provide meaningful feedback such as
statistical data about the patients’ movements from the Kinect
device that is equipped with a motion-tracking sensor [31-33].
The sensor aids the system in capturing important attributes
(data) of the patients’ movements such as average percentage,
average speed, average acceleration, distance, and points for the
evaluation of their performance [34]. However, MIRA system
currently lacks the tools in providing a meaningful evaluation of
patients’ performance to the physiotherapist [32]. MIRA
produces a big amount of statistical data for every session. It
stores all the statistical data of patients’ movements into the
Microsoft Azure cloud [35]. An analysis application is needed to
read the statistical data frequently from the cloud for further
analysis to provide meaningful data. Therefore, this study
proposed a framework that provides an effective and efficient
patient data analysis module for better evaluation of patients’
performance such as performance prediction [12], preference
optimisation [13], and preference recommendation [14].

Fig.1. The schematic diagram of the proposed method

b. MySQL Database

MySQL DBMS is used to create databases in the separate
server called database server [36]. The database server has a
separate database for MIRA users to store the data retrieved
from MIRA cloud. The databases store images of the MIRA
cloud retrieved data that have many differences in their
structures as follows:
• Data retrieved from the MIRA cloud are normalised

and spread among multiple tables to eliminate
redundancy of the data.

• Fixed textual values such as gender, difficulty, and side
retrieved from the MIRA cloud are coded into numeric
values to reduce storage space occupied by text values.

• There are three tables for every entity in every database.
The tables present the status of the patients and they are
captioned by the statuses, namely hot, warm, and cold
tables which contain the data of active, inactive, and
dead patients, respectively. Therefore, the data of the
patients are moved in accordance with the patients’
status. The movement of patients’ data is further
discussed in the next sections.

c. MySQL Database

Apache Ignite is a cache memory computing framework
that develops a highly available and strongly consistent cache
memory database or cache [37, 38]. It is a high-performance
computing framework used for the cache memory processing
of large-scale and real-time data sets. It looks like a distributed
data storage that works as a cache memory database [37]. This
study used Apache Ignite to create the hot partition image in
the main memory of the application server after reading the
data from the MIRA cloud. The cache memory image of data
is used to cache the data of currently active patients to provide
better reading performance. The fast read allows real-time
analysis on preference recommender, preference
optimisations, and decision tree analysis.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 28

presented. The scheme included two parts: intelligent diagnosis
and real-time diagnosis. Generally, a patient could use intelligent
diagnosis to take a self-service diagnosis first, if the patient
satisfies output, real-time diagnosis is passed. Otherwise, the
patient could use real-time diagnosis to take a manual diagnosis.
The combination of intelligent way and real-time way reduced
doctor’s work amount in diagnosis.
Based on the aforementioned discussion, none of the previous
cloud-based schemes have utilized the cache memory, which
leads to occur the delay problem and increases the monetary
costs when transferring data from the cloud to the application
server. Therefore, presenting a feasible method to overcome the
aforementioned problem is vital. Accordingly, in this paper, an
optimal data access framework is presented to cache the
statistical data of the patients in the application server. Moreover,
in order to manage the main memory space allocated to the
cache, the memory eviction algorithm is utilized. However, in the
eviction algorithm, internal tracking is used which leads to
occupying the memory space and charges extra cost on memory
management. To overcome the mentioned drawback, the data
portioning approach is utilized.

III. METHODOLOGY

In this section, the proposed optimal data access framework is
presented. The schematic diagram of the proposed method is
shown in Figure 1.

A. Architecture of the proposed framework
The main utilized component of the proposed method consists

of medical interactive rehabilitation assistant (MIRA), MySQL
Database, and Apache Ignite. These components are described in
detail in the next sub-sections.

a. MIRA
MIRA is a healthcare solution that conducts the rehabilitation

process using a virtual reality technology [29, 30]. It is a game-
based solution designed to provide meaningful feedback such as
statistical data about the patients’ movements from the Kinect
device that is equipped with a motion-tracking sensor [31-33].
The sensor aids the system in capturing important attributes
(data) of the patients’ movements such as average percentage,
average speed, average acceleration, distance, and points for the
evaluation of their performance [34]. However, MIRA system
currently lacks the tools in providing a meaningful evaluation of
patients’ performance to the physiotherapist [32]. MIRA
produces a big amount of statistical data for every session. It
stores all the statistical data of patients’ movements into the
Microsoft Azure cloud [35]. An analysis application is needed to
read the statistical data frequently from the cloud for further
analysis to provide meaningful data. Therefore, this study
proposed a framework that provides an effective and efficient
patient data analysis module for better evaluation of patients’
performance such as performance prediction [12], preference
optimisation [13], and preference recommendation [14].

Fig.1. The schematic diagram of the proposed method

b. MySQL Database

MySQL DBMS is used to create databases in the separate
server called database server [36]. The database server has a
separate database for MIRA users to store the data retrieved
from MIRA cloud. The databases store images of the MIRA
cloud retrieved data that have many differences in their
structures as follows:
• Data retrieved from the MIRA cloud are normalised

and spread among multiple tables to eliminate
redundancy of the data.

• Fixed textual values such as gender, difficulty, and side
retrieved from the MIRA cloud are coded into numeric
values to reduce storage space occupied by text values.

• There are three tables for every entity in every database.
The tables present the status of the patients and they are
captioned by the statuses, namely hot, warm, and cold
tables which contain the data of active, inactive, and
dead patients, respectively. Therefore, the data of the
patients are moved in accordance with the patients’
status. The movement of patients’ data is further
discussed in the next sections.

c. MySQL Database

Apache Ignite is a cache memory computing framework
that develops a highly available and strongly consistent cache
memory database or cache [37, 38]. It is a high-performance
computing framework used for the cache memory processing
of large-scale and real-time data sets. It looks like a distributed
data storage that works as a cache memory database [37]. This
study used Apache Ignite to create the hot partition image in
the main memory of the application server after reading the
data from the MIRA cloud. The cache memory image of data
is used to cache the data of currently active patients to provide
better reading performance. The fast read allows real-time
analysis on preference recommender, preference
optimisations, and decision tree analysis.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 29

B. Proposed Optimal Data Access Framework for
Telerehabilitation System

In this paper, the used data are the results of MIRA games.
The statistical data of the patients’ movement are stored in
MIRA application temporary storage before the MIRA
application synchronises the data to the database-as-a-service
(DBaaS) in the MIRA cloud. The application server has two
types of data download, namely manual and automatic [39].
The manual download is provided to the users to download the
data immediately for usage. The automatic download is a
time-based download that can be set by the users. For both
methods, the application server connects to the MIRA cloud
using a username and password which return an authorised
access token. Then, the application server uses the token with
startDate and endDate to download the statistical data of the
patients’ movement. The startDate and endDate are used to
download the data that are added to the DBaaS of the cloud
from the last download to the current time of the application
server. This mechanism ensures the non-duplication of the
downloaded data. Then, the data are downloaded in CSV file
format which is compressed in a ZIP file format. The
application server expands the zipped file and extracts the
CSV file. Finally, the process continues with the cleaning
operation of the raw data in the CSV file and produces data
that is suitable for both the main memory and disk-based
database.

In the proposed framework, the MIRA application writes
the data to cloud DBaaS that stores statistical data on patients’
movements. The analysis applications read the data from the
MIRA cloud to analyse, evaluate, and produce the results of
patients’ progress. The analysis applications run many read
operations to data stored in MIRA cloud, which increases the
monetary cost. In order to minimise this cost, this study
proposed an application side cache memory image of database
for the current active patients. The application side cache
memory image of the database is developed using Apache
Ignite. In the next sub-section, the proposed framework and
contributed functions are described in detail.

 Figure 2 shows the flow of the data in the proposed
framework in details. The architecture of figure 2 shows the
patients who are playing the MIRA (Exergames) in the
Rehabilitation center, where all the movement will be capture
in the PC or notebook. Every10 minutes the synchronization
happens in the MIRA cloud where all the data will be kept.
The MIRA data is downloaded every day around 12 PM to
ensure the medical doctor or physiotherapy can view the data
automatically the next day. Downloading the data is
performed manually or automatically and it will be
downloaded using a zip file and then will be unzipped under
CSV. In addition, the data can be cleaned and populated into a
database server, which is divided into three parts called Hot
partition, Warm partition, and Cold partition.

The data of the active patients are stored in the hot partition.
The status of a patient can be changed to warm if the respective
data has not been accessed for 3 months or the patient has been
discharged from the hospital. The data of the inactive patients
are stored in the cold partition.

In cache memory data, the application server needs to have
a data analyst and data manager in analyzing data and
organizing the data in retrieving the cache memory. Finally,
the physiotherapies can access the data.

a. Data Normalisation and Coding
The data are stored in the CSV file as they are retrieved from

the cloud. The CSV file is structured as one table that is not
normalised and has many fixed text values which can be coded
into numeric values. Normalisation. All the data are
downloaded in one table that has several redundancies in each
record such as PatientID, FirstName, LastName, BirthDate,
and others. Therefore, normalisation is used as a systematic
approach to produce multiple tables to eliminate data
redundancy (repetition). Figure 2 shows the six levels of
normal form, and the best level is in the 3rd normal form for
most practical applications.

After downloading and extracting the data, each column in
the download file has a table column in the database. The data
in this column are inserted into the corresponding table
column and the redundant data in the column are eliminated.
The database consists of a set of relational tables that eliminate
any redundancy. Coding. For the optimisation of the storage
space, the textual data that have fixed values such as gender,
side, difficulty (e.g., easy, medium, and hard), and diagnosis
are converted into numbers to reduce storage spaces and
computation overhead of string values. For example, Table 1
coding for the values of the difficulty column in the database.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 28

presented. The scheme included two parts: intelligent diagnosis
and real-time diagnosis. Generally, a patient could use intelligent
diagnosis to take a self-service diagnosis first, if the patient
satisfies output, real-time diagnosis is passed. Otherwise, the
patient could use real-time diagnosis to take a manual diagnosis.
The combination of intelligent way and real-time way reduced
doctor’s work amount in diagnosis.
Based on the aforementioned discussion, none of the previous
cloud-based schemes have utilized the cache memory, which
leads to occur the delay problem and increases the monetary
costs when transferring data from the cloud to the application
server. Therefore, presenting a feasible method to overcome the
aforementioned problem is vital. Accordingly, in this paper, an
optimal data access framework is presented to cache the
statistical data of the patients in the application server. Moreover,
in order to manage the main memory space allocated to the
cache, the memory eviction algorithm is utilized. However, in the
eviction algorithm, internal tracking is used which leads to
occupying the memory space and charges extra cost on memory
management. To overcome the mentioned drawback, the data
portioning approach is utilized.

III. METHODOLOGY

In this section, the proposed optimal data access framework is
presented. The schematic diagram of the proposed method is
shown in Figure 1.

A. Architecture of the proposed framework
The main utilized component of the proposed method consists

of medical interactive rehabilitation assistant (MIRA), MySQL
Database, and Apache Ignite. These components are described in
detail in the next sub-sections.

a. MIRA
MIRA is a healthcare solution that conducts the rehabilitation

process using a virtual reality technology [29, 30]. It is a game-
based solution designed to provide meaningful feedback such as
statistical data about the patients’ movements from the Kinect
device that is equipped with a motion-tracking sensor [31-33].
The sensor aids the system in capturing important attributes
(data) of the patients’ movements such as average percentage,
average speed, average acceleration, distance, and points for the
evaluation of their performance [34]. However, MIRA system
currently lacks the tools in providing a meaningful evaluation of
patients’ performance to the physiotherapist [32]. MIRA
produces a big amount of statistical data for every session. It
stores all the statistical data of patients’ movements into the
Microsoft Azure cloud [35]. An analysis application is needed to
read the statistical data frequently from the cloud for further
analysis to provide meaningful data. Therefore, this study
proposed a framework that provides an effective and efficient
patient data analysis module for better evaluation of patients’
performance such as performance prediction [12], preference
optimisation [13], and preference recommendation [14].

Fig.1. The schematic diagram of the proposed method

b. MySQL Database

MySQL DBMS is used to create databases in the separate
server called database server [36]. The database server has a
separate database for MIRA users to store the data retrieved
from MIRA cloud. The databases store images of the MIRA
cloud retrieved data that have many differences in their
structures as follows:
• Data retrieved from the MIRA cloud are normalised

and spread among multiple tables to eliminate
redundancy of the data.

• Fixed textual values such as gender, difficulty, and side
retrieved from the MIRA cloud are coded into numeric
values to reduce storage space occupied by text values.

• There are three tables for every entity in every database.
The tables present the status of the patients and they are
captioned by the statuses, namely hot, warm, and cold
tables which contain the data of active, inactive, and
dead patients, respectively. Therefore, the data of the
patients are moved in accordance with the patients’
status. The movement of patients’ data is further
discussed in the next sections.

c. MySQL Database

Apache Ignite is a cache memory computing framework
that develops a highly available and strongly consistent cache
memory database or cache [37, 38]. It is a high-performance
computing framework used for the cache memory processing
of large-scale and real-time data sets. It looks like a distributed
data storage that works as a cache memory database [37]. This
study used Apache Ignite to create the hot partition image in
the main memory of the application server after reading the
data from the MIRA cloud. The cache memory image of data
is used to cache the data of currently active patients to provide
better reading performance. The fast read allows real-time
analysis on preference recommender, preference
optimisations, and decision tree analysis.

28

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 29

B. Proposed Optimal Data Access Framework for
Telerehabilitation System

In this paper, the used data are the results of MIRA games.
The statistical data of the patients’ movement are stored in
MIRA application temporary storage before the MIRA
application synchronises the data to the database-as-a-service
(DBaaS) in the MIRA cloud. The application server has two
types of data download, namely manual and automatic [39].
The manual download is provided to the users to download the
data immediately for usage. The automatic download is a
time-based download that can be set by the users. For both
methods, the application server connects to the MIRA cloud
using a username and password which return an authorised
access token. Then, the application server uses the token with
startDate and endDate to download the statistical data of the
patients’ movement. The startDate and endDate are used to
download the data that are added to the DBaaS of the cloud
from the last download to the current time of the application
server. This mechanism ensures the non-duplication of the
downloaded data. Then, the data are downloaded in CSV file
format which is compressed in a ZIP file format. The
application server expands the zipped file and extracts the
CSV file. Finally, the process continues with the cleaning
operation of the raw data in the CSV file and produces data
that is suitable for both the main memory and disk-based
database.

In the proposed framework, the MIRA application writes
the data to cloud DBaaS that stores statistical data on patients’
movements. The analysis applications read the data from the
MIRA cloud to analyse, evaluate, and produce the results of
patients’ progress. The analysis applications run many read
operations to data stored in MIRA cloud, which increases the
monetary cost. In order to minimise this cost, this study
proposed an application side cache memory image of database
for the current active patients. The application side cache
memory image of the database is developed using Apache
Ignite. In the next sub-section, the proposed framework and
contributed functions are described in detail.

 Figure 2 shows the flow of the data in the proposed
framework in details. The architecture of figure 2 shows the
patients who are playing the MIRA (Exergames) in the
Rehabilitation center, where all the movement will be capture
in the PC or notebook. Every10 minutes the synchronization
happens in the MIRA cloud where all the data will be kept.
The MIRA data is downloaded every day around 12 PM to
ensure the medical doctor or physiotherapy can view the data
automatically the next day. Downloading the data is
performed manually or automatically and it will be
downloaded using a zip file and then will be unzipped under
CSV. In addition, the data can be cleaned and populated into a
database server, which is divided into three parts called Hot
partition, Warm partition, and Cold partition.

The data of the active patients are stored in the hot partition.
The status of a patient can be changed to warm if the respective
data has not been accessed for 3 months or the patient has been
discharged from the hospital. The data of the inactive patients
are stored in the cold partition.

In cache memory data, the application server needs to have
a data analyst and data manager in analyzing data and
organizing the data in retrieving the cache memory. Finally,
the physiotherapies can access the data.

a. Data Normalisation and Coding
The data are stored in the CSV file as they are retrieved from

the cloud. The CSV file is structured as one table that is not
normalised and has many fixed text values which can be coded
into numeric values. Normalisation. All the data are
downloaded in one table that has several redundancies in each
record such as PatientID, FirstName, LastName, BirthDate,
and others. Therefore, normalisation is used as a systematic
approach to produce multiple tables to eliminate data
redundancy (repetition). Figure 2 shows the six levels of
normal form, and the best level is in the 3rd normal form for
most practical applications.

After downloading and extracting the data, each column in
the download file has a table column in the database. The data
in this column are inserted into the corresponding table
column and the redundant data in the column are eliminated.
The database consists of a set of relational tables that eliminate
any redundancy. Coding. For the optimisation of the storage
space, the textual data that have fixed values such as gender,
side, difficulty (e.g., easy, medium, and hard), and diagnosis
are converted into numbers to reduce storage spaces and
computation overhead of string values. For example, Table 1
coding for the values of the difficulty column in the database.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 30

Fig.2. Data flow of the proposed framework

Fig.3. Normalisation forms

shows
the

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 29

B. Proposed Optimal Data Access Framework for
Telerehabilitation System

In this paper, the used data are the results of MIRA games.
The statistical data of the patients’ movement are stored in
MIRA application temporary storage before the MIRA
application synchronises the data to the database-as-a-service
(DBaaS) in the MIRA cloud. The application server has two
types of data download, namely manual and automatic [39].
The manual download is provided to the users to download the
data immediately for usage. The automatic download is a
time-based download that can be set by the users. For both
methods, the application server connects to the MIRA cloud
using a username and password which return an authorised
access token. Then, the application server uses the token with
startDate and endDate to download the statistical data of the
patients’ movement. The startDate and endDate are used to
download the data that are added to the DBaaS of the cloud
from the last download to the current time of the application
server. This mechanism ensures the non-duplication of the
downloaded data. Then, the data are downloaded in CSV file
format which is compressed in a ZIP file format. The
application server expands the zipped file and extracts the
CSV file. Finally, the process continues with the cleaning
operation of the raw data in the CSV file and produces data
that is suitable for both the main memory and disk-based
database.

In the proposed framework, the MIRA application writes
the data to cloud DBaaS that stores statistical data on patients’
movements. The analysis applications read the data from the
MIRA cloud to analyse, evaluate, and produce the results of
patients’ progress. The analysis applications run many read
operations to data stored in MIRA cloud, which increases the
monetary cost. In order to minimise this cost, this study
proposed an application side cache memory image of database
for the current active patients. The application side cache
memory image of the database is developed using Apache
Ignite. In the next sub-section, the proposed framework and
contributed functions are described in detail.

 Figure 2 shows the flow of the data in the proposed
framework in details. The architecture of figure 2 shows the
patients who are playing the MIRA (Exergames) in the
Rehabilitation center, where all the movement will be capture
in the PC or notebook. Every10 minutes the synchronization
happens in the MIRA cloud where all the data will be kept.
The MIRA data is downloaded every day around 12 PM to
ensure the medical doctor or physiotherapy can view the data
automatically the next day. Downloading the data is
performed manually or automatically and it will be
downloaded using a zip file and then will be unzipped under
CSV. In addition, the data can be cleaned and populated into a
database server, which is divided into three parts called Hot
partition, Warm partition, and Cold partition.

The data of the active patients are stored in the hot partition.
The status of a patient can be changed to warm if the respective
data has not been accessed for 3 months or the patient has been
discharged from the hospital. The data of the inactive patients
are stored in the cold partition.

In cache memory data, the application server needs to have
a data analyst and data manager in analyzing data and
organizing the data in retrieving the cache memory. Finally,
the physiotherapies can access the data.

a. Data Normalisation and Coding
The data are stored in the CSV file as they are retrieved from

the cloud. The CSV file is structured as one table that is not
normalised and has many fixed text values which can be coded
into numeric values. Normalisation. All the data are
downloaded in one table that has several redundancies in each
record such as PatientID, FirstName, LastName, BirthDate,
and others. Therefore, normalisation is used as a systematic
approach to produce multiple tables to eliminate data
redundancy (repetition). Figure 2 shows the six levels of
normal form, and the best level is in the 3rd normal form for
most practical applications.

After downloading and extracting the data, each column in
the download file has a table column in the database. The data
in this column are inserted into the corresponding table
column and the redundant data in the column are eliminated.
The database consists of a set of relational tables that eliminate
any redundancy. Coding. For the optimisation of the storage
space, the textual data that have fixed values such as gender,
side, difficulty (e.g., easy, medium, and hard), and diagnosis
are converted into numbers to reduce storage spaces and
computation overhead of string values. For example, Table 1
coding for the values of the difficulty column in the database.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 29

B. Proposed Optimal Data Access Framework for
Telerehabilitation System

In this paper, the used data are the results of MIRA games.
The statistical data of the patients’ movement are stored in
MIRA application temporary storage before the MIRA
application synchronises the data to the database-as-a-service
(DBaaS) in the MIRA cloud. The application server has two
types of data download, namely manual and automatic [39].
The manual download is provided to the users to download the
data immediately for usage. The automatic download is a
time-based download that can be set by the users. For both
methods, the application server connects to the MIRA cloud
using a username and password which return an authorised
access token. Then, the application server uses the token with
startDate and endDate to download the statistical data of the
patients’ movement. The startDate and endDate are used to
download the data that are added to the DBaaS of the cloud
from the last download to the current time of the application
server. This mechanism ensures the non-duplication of the
downloaded data. Then, the data are downloaded in CSV file
format which is compressed in a ZIP file format. The
application server expands the zipped file and extracts the
CSV file. Finally, the process continues with the cleaning
operation of the raw data in the CSV file and produces data
that is suitable for both the main memory and disk-based
database.

In the proposed framework, the MIRA application writes
the data to cloud DBaaS that stores statistical data on patients’
movements. The analysis applications read the data from the
MIRA cloud to analyse, evaluate, and produce the results of
patients’ progress. The analysis applications run many read
operations to data stored in MIRA cloud, which increases the
monetary cost. In order to minimise this cost, this study
proposed an application side cache memory image of database
for the current active patients. The application side cache
memory image of the database is developed using Apache
Ignite. In the next sub-section, the proposed framework and
contributed functions are described in detail.

 Figure 2 shows the flow of the data in the proposed
framework in details. The architecture of figure 2 shows the
patients who are playing the MIRA (Exergames) in the
Rehabilitation center, where all the movement will be capture
in the PC or notebook. Every10 minutes the synchronization
happens in the MIRA cloud where all the data will be kept.
The MIRA data is downloaded every day around 12 PM to
ensure the medical doctor or physiotherapy can view the data
automatically the next day. Downloading the data is
performed manually or automatically and it will be
downloaded using a zip file and then will be unzipped under
CSV. In addition, the data can be cleaned and populated into a
database server, which is divided into three parts called Hot
partition, Warm partition, and Cold partition.

The data of the active patients are stored in the hot partition.
The status of a patient can be changed to warm if the respective
data has not been accessed for 3 months or the patient has been
discharged from the hospital. The data of the inactive patients
are stored in the cold partition.

In cache memory data, the application server needs to have
a data analyst and data manager in analyzing data and
organizing the data in retrieving the cache memory. Finally,
the physiotherapies can access the data.

a. Data Normalisation and Coding
The data are stored in the CSV file as they are retrieved from

the cloud. The CSV file is structured as one table that is not
normalised and has many fixed text values which can be coded
into numeric values. Normalisation. All the data are
downloaded in one table that has several redundancies in each
record such as PatientID, FirstName, LastName, BirthDate,
and others. Therefore, normalisation is used as a systematic
approach to produce multiple tables to eliminate data
redundancy (repetition). Figure 2 shows the six levels of
normal form, and the best level is in the 3rd normal form for
most practical applications.

After downloading and extracting the data, each column in
the download file has a table column in the database. The data
in this column are inserted into the corresponding table
column and the redundant data in the column are eliminated.
The database consists of a set of relational tables that eliminate
any redundancy. Coding. For the optimisation of the storage
space, the textual data that have fixed values such as gender,
side, difficulty (e.g., easy, medium, and hard), and diagnosis
are converted into numbers to reduce storage spaces and
computation overhead of string values. For example, Table 1
coding for the values of the difficulty column in the database.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 30

Fig.2. Data flow of the proposed framework

Fig.3. Normalisation forms

shows
the

An Optimal Data Access Framework for Telerehabilitation System

29ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 30

Fig.2. Data flow of the proposed framework

Fig.3. Normalisation forms

shows
the

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 30

Fig.2. Data flow of the proposed framework

Fig.3. Normalisation forms

shows
the

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 31

b) Database Custom Partitioning
The database is divided into three partitions according to the

patients’ status. The three statuses include active
Table 1. Example of data coding

Textual Code
Easy 1

medium 2
hard 3

patients, inactive patients, dead patients whose data are
placed in hot partition, warm partition, and cold partition,
respectively, as shown in Figure 2. The data of active patients
are considered as hot data and they are stored in the partition
called hot. The hot partition has an identical copy that is
always stored in the main memory. Any active patient data can
be moved to warm partition for cases where the patient is
discharged or stops the therapy exercises. The data can be
moved to cold partition for dead patients. When the data are
moved to the warm partition or cold partition, they are
completely deleted from the hot partition and also from their
corresponding main memory image. The inactive status of the
patient can be changed to active or discharged at any time.
After changing the status of the inactive patient, the data are
immediately moved to the corresponding partition of the new
status. The cold partition contains the data of the dead patients
and their status cannot be changed to other statuses. Any
changes in the hot partition such as adding or deleting patients’
data are immediately synchronised with the copy in the main
memory. All of the operations of data movement and the
manipulation of hot partition are performed by the data
manager in the application server-side.

The custom partitioning filters the data in the disk-based
database. Therefore, only the hot data have an identical copy
in the main memory. In this case, the memory for the evicted
data of inactive and dead patients removes the internal tracks,
keys, and indexed fields. The internal tracks, keys, and
indexed fields are deleted from the hot partition copy in the
main memory when the patients’ data are moved from the hot
partition. When the patients’ data are moved (for example,
inactive patient becomes active) or added (registration of a
new patient or current active patients play more games) to the
hot partition, all the information are synchronised to the hot
partition image in the main memory of the application server-
side.

b. Main Memory Copy of Hot Partition (Cache)
The proposed solution provides a database caching system

that can cache a huge amount of data like the cache memory
database while allowing the data manager to choose which
data that need to be cached (not all the database such as the
cache memory database). The main memory copy is based on
ACID (atomicity, consistency, isolation, durability) which
provides strong consistency of the data. Moreover, it keeps all
the calculated and derived values. Hence, there is no need to
recalculate and derive the data whenever they are required by
users.

The main advantage of the proposed main memory copy of
the hot partition is its selectiveness. The proposed solution
allows caching the currently used data (data of active patients)
to the main memory, unlike the cache memory databases that
store the entire copy of the database in the main memory.
Caching is only done on the data that need to be cached to
increase memory size savings. Another advantage is the
reduced database lookups overhead as the data manager
knows which partition contains the required data. This step is
performed by adding one column to the patients’ data for the
current status that tells the system the partition of the patients’
data. Besides that, the hot partition is larger than the available
cache space. LRU algorithm is used to manage the data in the
cache and decides which record should stay in the cache and
which one should be evicted to the hot partition in the disk-
based database. It also minimises the number of reading
operations from the MIRA cloud that reduces the monetary
cost of the whole service. It is believed that the proposed
solutions can solve the above-mentioned problems.

c. Cloud Service Cost
When the patients’ data are required, a read operation is sent

to the MIRA cloud. Every time the data are read from the
cloud, the monetary cost is charged for reading operations and
network consumption. Therefore, the more the data are read
from the cloud, charges more money. The proposed system
reads any piece of data only once before storing the data in the
application server-side in the main memory copy of hot
partition for any subsequent access. Whenever there is a read
request of data, the proposed system searches for the requested
data in the main memory copy of the hot partition. If the data
are not in memory, the data can be retrieved from the cloud. In
order to provide optimised read operation, the system
performs event-derived synchronisation of the hot partition in
the disk-based database and the main memory copy in the
application server-side. It allows users to set periodic and
manual download from the cloud. This mechanism reduces the
number of reading operations from the cloud, which charges
the monetary cost for every read operation, network
consumption, and data retrieval.

IV. MATHEMATICAL MODEL

This section discusses all the achieved optimisations of the

proposed framework, and the modelling part is conducted to
derive a mathematical equation that shows how latency, cost,
and memory savings are optimised. Developed mathematical
equations are the objective function for the process of
optimisation. The mathematical models for every optimisation
are as follows:
A. Access Latency Optimisation

The data access latency for a client is caused by cloud
(network), hard disk drive, and main memory latencies, which
are discussed in detail in the next three subsections.

Cloud latency: In the cloud, access latency is determined
according to the suspension of time when the request is issued
and the time when that data is obtained. Small size data latency
is governed by network latency, and the latency is estimated

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 31

b) Database Custom Partitioning
The database is divided into three partitions according to the

patients’ status. The three statuses include active
Table 1. Example of data coding

Textual Code
Easy 1

medium 2
hard 3

patients, inactive patients, dead patients whose data are
placed in hot partition, warm partition, and cold partition,
respectively, as shown in Figure 2. The data of active patients
are considered as hot data and they are stored in the partition
called hot. The hot partition has an identical copy that is
always stored in the main memory. Any active patient data can
be moved to warm partition for cases where the patient is
discharged or stops the therapy exercises. The data can be
moved to cold partition for dead patients. When the data are
moved to the warm partition or cold partition, they are
completely deleted from the hot partition and also from their
corresponding main memory image. The inactive status of the
patient can be changed to active or discharged at any time.
After changing the status of the inactive patient, the data are
immediately moved to the corresponding partition of the new
status. The cold partition contains the data of the dead patients
and their status cannot be changed to other statuses. Any
changes in the hot partition such as adding or deleting patients’
data are immediately synchronised with the copy in the main
memory. All of the operations of data movement and the
manipulation of hot partition are performed by the data
manager in the application server-side.

The custom partitioning filters the data in the disk-based
database. Therefore, only the hot data have an identical copy
in the main memory. In this case, the memory for the evicted
data of inactive and dead patients removes the internal tracks,
keys, and indexed fields. The internal tracks, keys, and
indexed fields are deleted from the hot partition copy in the
main memory when the patients’ data are moved from the hot
partition. When the patients’ data are moved (for example,
inactive patient becomes active) or added (registration of a
new patient or current active patients play more games) to the
hot partition, all the information are synchronised to the hot
partition image in the main memory of the application server-
side.

b. Main Memory Copy of Hot Partition (Cache)
The proposed solution provides a database caching system

that can cache a huge amount of data like the cache memory
database while allowing the data manager to choose which
data that need to be cached (not all the database such as the
cache memory database). The main memory copy is based on
ACID (atomicity, consistency, isolation, durability) which
provides strong consistency of the data. Moreover, it keeps all
the calculated and derived values. Hence, there is no need to
recalculate and derive the data whenever they are required by
users.

The main advantage of the proposed main memory copy of
the hot partition is its selectiveness. The proposed solution
allows caching the currently used data (data of active patients)
to the main memory, unlike the cache memory databases that
store the entire copy of the database in the main memory.
Caching is only done on the data that need to be cached to
increase memory size savings. Another advantage is the
reduced database lookups overhead as the data manager
knows which partition contains the required data. This step is
performed by adding one column to the patients’ data for the
current status that tells the system the partition of the patients’
data. Besides that, the hot partition is larger than the available
cache space. LRU algorithm is used to manage the data in the
cache and decides which record should stay in the cache and
which one should be evicted to the hot partition in the disk-
based database. It also minimises the number of reading
operations from the MIRA cloud that reduces the monetary
cost of the whole service. It is believed that the proposed
solutions can solve the above-mentioned problems.

c. Cloud Service Cost
When the patients’ data are required, a read operation is sent

to the MIRA cloud. Every time the data are read from the
cloud, the monetary cost is charged for reading operations and
network consumption. Therefore, the more the data are read
from the cloud, charges more money. The proposed system
reads any piece of data only once before storing the data in the
application server-side in the main memory copy of hot
partition for any subsequent access. Whenever there is a read
request of data, the proposed system searches for the requested
data in the main memory copy of the hot partition. If the data
are not in memory, the data can be retrieved from the cloud. In
order to provide optimised read operation, the system
performs event-derived synchronisation of the hot partition in
the disk-based database and the main memory copy in the
application server-side. It allows users to set periodic and
manual download from the cloud. This mechanism reduces the
number of reading operations from the cloud, which charges
the monetary cost for every read operation, network
consumption, and data retrieval.

IV. MATHEMATICAL MODEL

This section discusses all the achieved optimisations of the

proposed framework, and the modelling part is conducted to
derive a mathematical equation that shows how latency, cost,
and memory savings are optimised. Developed mathematical
equations are the objective function for the process of
optimisation. The mathematical models for every optimisation
are as follows:
A. Access Latency Optimisation

The data access latency for a client is caused by cloud
(network), hard disk drive, and main memory latencies, which
are discussed in detail in the next three subsections.

Cloud latency: In the cloud, access latency is determined
according to the suspension of time when the request is issued
and the time when that data is obtained. Small size data latency
is governed by network latency, and the latency is estimated

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 31

b) Database Custom Partitioning
The database is divided into three partitions according to the

patients’ status. The three statuses include active
Table 1. Example of data coding

Textual Code
Easy 1

medium 2
hard 3

patients, inactive patients, dead patients whose data are
placed in hot partition, warm partition, and cold partition,
respectively, as shown in Figure 2. The data of active patients
are considered as hot data and they are stored in the partition
called hot. The hot partition has an identical copy that is
always stored in the main memory. Any active patient data can
be moved to warm partition for cases where the patient is
discharged or stops the therapy exercises. The data can be
moved to cold partition for dead patients. When the data are
moved to the warm partition or cold partition, they are
completely deleted from the hot partition and also from their
corresponding main memory image. The inactive status of the
patient can be changed to active or discharged at any time.
After changing the status of the inactive patient, the data are
immediately moved to the corresponding partition of the new
status. The cold partition contains the data of the dead patients
and their status cannot be changed to other statuses. Any
changes in the hot partition such as adding or deleting patients’
data are immediately synchronised with the copy in the main
memory. All of the operations of data movement and the
manipulation of hot partition are performed by the data
manager in the application server-side.

The custom partitioning filters the data in the disk-based
database. Therefore, only the hot data have an identical copy
in the main memory. In this case, the memory for the evicted
data of inactive and dead patients removes the internal tracks,
keys, and indexed fields. The internal tracks, keys, and
indexed fields are deleted from the hot partition copy in the
main memory when the patients’ data are moved from the hot
partition. When the patients’ data are moved (for example,
inactive patient becomes active) or added (registration of a
new patient or current active patients play more games) to the
hot partition, all the information are synchronised to the hot
partition image in the main memory of the application server-
side.

b. Main Memory Copy of Hot Partition (Cache)
The proposed solution provides a database caching system

that can cache a huge amount of data like the cache memory
database while allowing the data manager to choose which
data that need to be cached (not all the database such as the
cache memory database). The main memory copy is based on
ACID (atomicity, consistency, isolation, durability) which
provides strong consistency of the data. Moreover, it keeps all
the calculated and derived values. Hence, there is no need to
recalculate and derive the data whenever they are required by
users.

The main advantage of the proposed main memory copy of
the hot partition is its selectiveness. The proposed solution
allows caching the currently used data (data of active patients)
to the main memory, unlike the cache memory databases that
store the entire copy of the database in the main memory.
Caching is only done on the data that need to be cached to
increase memory size savings. Another advantage is the
reduced database lookups overhead as the data manager
knows which partition contains the required data. This step is
performed by adding one column to the patients’ data for the
current status that tells the system the partition of the patients’
data. Besides that, the hot partition is larger than the available
cache space. LRU algorithm is used to manage the data in the
cache and decides which record should stay in the cache and
which one should be evicted to the hot partition in the disk-
based database. It also minimises the number of reading
operations from the MIRA cloud that reduces the monetary
cost of the whole service. It is believed that the proposed
solutions can solve the above-mentioned problems.

c. Cloud Service Cost
When the patients’ data are required, a read operation is sent

to the MIRA cloud. Every time the data are read from the
cloud, the monetary cost is charged for reading operations and
network consumption. Therefore, the more the data are read
from the cloud, charges more money. The proposed system
reads any piece of data only once before storing the data in the
application server-side in the main memory copy of hot
partition for any subsequent access. Whenever there is a read
request of data, the proposed system searches for the requested
data in the main memory copy of the hot partition. If the data
are not in memory, the data can be retrieved from the cloud. In
order to provide optimised read operation, the system
performs event-derived synchronisation of the hot partition in
the disk-based database and the main memory copy in the
application server-side. It allows users to set periodic and
manual download from the cloud. This mechanism reduces the
number of reading operations from the cloud, which charges
the monetary cost for every read operation, network
consumption, and data retrieval.

IV. MATHEMATICAL MODEL

This section discusses all the achieved optimisations of the

proposed framework, and the modelling part is conducted to
derive a mathematical equation that shows how latency, cost,
and memory savings are optimised. Developed mathematical
equations are the objective function for the process of
optimisation. The mathematical models for every optimisation
are as follows:
A. Access Latency Optimisation

The data access latency for a client is caused by cloud
(network), hard disk drive, and main memory latencies, which
are discussed in detail in the next three subsections.

Cloud latency: In the cloud, access latency is determined
according to the suspension of time when the request is issued
and the time when that data is obtained. Small size data latency
is governed by network latency, and the latency is estimated

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 31

b) Database Custom Partitioning
The database is divided into three partitions according to the

patients’ status. The three statuses include active
Table 1. Example of data coding

Textual Code
Easy 1

medium 2
hard 3

patients, inactive patients, dead patients whose data are
placed in hot partition, warm partition, and cold partition,
respectively, as shown in Figure 2. The data of active patients
are considered as hot data and they are stored in the partition
called hot. The hot partition has an identical copy that is
always stored in the main memory. Any active patient data can
be moved to warm partition for cases where the patient is
discharged or stops the therapy exercises. The data can be
moved to cold partition for dead patients. When the data are
moved to the warm partition or cold partition, they are
completely deleted from the hot partition and also from their
corresponding main memory image. The inactive status of the
patient can be changed to active or discharged at any time.
After changing the status of the inactive patient, the data are
immediately moved to the corresponding partition of the new
status. The cold partition contains the data of the dead patients
and their status cannot be changed to other statuses. Any
changes in the hot partition such as adding or deleting patients’
data are immediately synchronised with the copy in the main
memory. All of the operations of data movement and the
manipulation of hot partition are performed by the data
manager in the application server-side.

The custom partitioning filters the data in the disk-based
database. Therefore, only the hot data have an identical copy
in the main memory. In this case, the memory for the evicted
data of inactive and dead patients removes the internal tracks,
keys, and indexed fields. The internal tracks, keys, and
indexed fields are deleted from the hot partition copy in the
main memory when the patients’ data are moved from the hot
partition. When the patients’ data are moved (for example,
inactive patient becomes active) or added (registration of a
new patient or current active patients play more games) to the
hot partition, all the information are synchronised to the hot
partition image in the main memory of the application server-
side.

b. Main Memory Copy of Hot Partition (Cache)
The proposed solution provides a database caching system

that can cache a huge amount of data like the cache memory
database while allowing the data manager to choose which
data that need to be cached (not all the database such as the
cache memory database). The main memory copy is based on
ACID (atomicity, consistency, isolation, durability) which
provides strong consistency of the data. Moreover, it keeps all
the calculated and derived values. Hence, there is no need to
recalculate and derive the data whenever they are required by
users.

The main advantage of the proposed main memory copy of
the hot partition is its selectiveness. The proposed solution
allows caching the currently used data (data of active patients)
to the main memory, unlike the cache memory databases that
store the entire copy of the database in the main memory.
Caching is only done on the data that need to be cached to
increase memory size savings. Another advantage is the
reduced database lookups overhead as the data manager
knows which partition contains the required data. This step is
performed by adding one column to the patients’ data for the
current status that tells the system the partition of the patients’
data. Besides that, the hot partition is larger than the available
cache space. LRU algorithm is used to manage the data in the
cache and decides which record should stay in the cache and
which one should be evicted to the hot partition in the disk-
based database. It also minimises the number of reading
operations from the MIRA cloud that reduces the monetary
cost of the whole service. It is believed that the proposed
solutions can solve the above-mentioned problems.

c. Cloud Service Cost
When the patients’ data are required, a read operation is sent

to the MIRA cloud. Every time the data are read from the
cloud, the monetary cost is charged for reading operations and
network consumption. Therefore, the more the data are read
from the cloud, charges more money. The proposed system
reads any piece of data only once before storing the data in the
application server-side in the main memory copy of hot
partition for any subsequent access. Whenever there is a read
request of data, the proposed system searches for the requested
data in the main memory copy of the hot partition. If the data
are not in memory, the data can be retrieved from the cloud. In
order to provide optimised read operation, the system
performs event-derived synchronisation of the hot partition in
the disk-based database and the main memory copy in the
application server-side. It allows users to set periodic and
manual download from the cloud. This mechanism reduces the
number of reading operations from the cloud, which charges
the monetary cost for every read operation, network
consumption, and data retrieval.

IV. MATHEMATICAL MODEL

This section discusses all the achieved optimisations of the

proposed framework, and the modelling part is conducted to
derive a mathematical equation that shows how latency, cost,
and memory savings are optimised. Developed mathematical
equations are the objective function for the process of
optimisation. The mathematical models for every optimisation
are as follows:
A. Access Latency Optimisation

The data access latency for a client is caused by cloud
(network), hard disk drive, and main memory latencies, which
are discussed in detail in the next three subsections.

Cloud latency: In the cloud, access latency is determined
according to the suspension of time when the request is issued
and the time when that data is obtained. Small size data latency
is governed by network latency, and the latency is estimated

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 31

b) Database Custom Partitioning
The database is divided into three partitions according to the

patients’ status. The three statuses include active
Table 1. Example of data coding

Textual Code
Easy 1

medium 2
hard 3

patients, inactive patients, dead patients whose data are
placed in hot partition, warm partition, and cold partition,
respectively, as shown in Figure 2. The data of active patients
are considered as hot data and they are stored in the partition
called hot. The hot partition has an identical copy that is
always stored in the main memory. Any active patient data can
be moved to warm partition for cases where the patient is
discharged or stops the therapy exercises. The data can be
moved to cold partition for dead patients. When the data are
moved to the warm partition or cold partition, they are
completely deleted from the hot partition and also from their
corresponding main memory image. The inactive status of the
patient can be changed to active or discharged at any time.
After changing the status of the inactive patient, the data are
immediately moved to the corresponding partition of the new
status. The cold partition contains the data of the dead patients
and their status cannot be changed to other statuses. Any
changes in the hot partition such as adding or deleting patients’
data are immediately synchronised with the copy in the main
memory. All of the operations of data movement and the
manipulation of hot partition are performed by the data
manager in the application server-side.

The custom partitioning filters the data in the disk-based
database. Therefore, only the hot data have an identical copy
in the main memory. In this case, the memory for the evicted
data of inactive and dead patients removes the internal tracks,
keys, and indexed fields. The internal tracks, keys, and
indexed fields are deleted from the hot partition copy in the
main memory when the patients’ data are moved from the hot
partition. When the patients’ data are moved (for example,
inactive patient becomes active) or added (registration of a
new patient or current active patients play more games) to the
hot partition, all the information are synchronised to the hot
partition image in the main memory of the application server-
side.

b. Main Memory Copy of Hot Partition (Cache)
The proposed solution provides a database caching system

that can cache a huge amount of data like the cache memory
database while allowing the data manager to choose which
data that need to be cached (not all the database such as the
cache memory database). The main memory copy is based on
ACID (atomicity, consistency, isolation, durability) which
provides strong consistency of the data. Moreover, it keeps all
the calculated and derived values. Hence, there is no need to
recalculate and derive the data whenever they are required by
users.

The main advantage of the proposed main memory copy of
the hot partition is its selectiveness. The proposed solution
allows caching the currently used data (data of active patients)
to the main memory, unlike the cache memory databases that
store the entire copy of the database in the main memory.
Caching is only done on the data that need to be cached to
increase memory size savings. Another advantage is the
reduced database lookups overhead as the data manager
knows which partition contains the required data. This step is
performed by adding one column to the patients’ data for the
current status that tells the system the partition of the patients’
data. Besides that, the hot partition is larger than the available
cache space. LRU algorithm is used to manage the data in the
cache and decides which record should stay in the cache and
which one should be evicted to the hot partition in the disk-
based database. It also minimises the number of reading
operations from the MIRA cloud that reduces the monetary
cost of the whole service. It is believed that the proposed
solutions can solve the above-mentioned problems.

c. Cloud Service Cost
When the patients’ data are required, a read operation is sent

to the MIRA cloud. Every time the data are read from the
cloud, the monetary cost is charged for reading operations and
network consumption. Therefore, the more the data are read
from the cloud, charges more money. The proposed system
reads any piece of data only once before storing the data in the
application server-side in the main memory copy of hot
partition for any subsequent access. Whenever there is a read
request of data, the proposed system searches for the requested
data in the main memory copy of the hot partition. If the data
are not in memory, the data can be retrieved from the cloud. In
order to provide optimised read operation, the system
performs event-derived synchronisation of the hot partition in
the disk-based database and the main memory copy in the
application server-side. It allows users to set periodic and
manual download from the cloud. This mechanism reduces the
number of reading operations from the cloud, which charges
the monetary cost for every read operation, network
consumption, and data retrieval.

IV. MATHEMATICAL MODEL

This section discusses all the achieved optimisations of the

proposed framework, and the modelling part is conducted to
derive a mathematical equation that shows how latency, cost,
and memory savings are optimised. Developed mathematical
equations are the objective function for the process of
optimisation. The mathematical models for every optimisation
are as follows:
A. Access Latency Optimisation

The data access latency for a client is caused by cloud
(network), hard disk drive, and main memory latencies, which
are discussed in detail in the next three subsections.

Cloud latency: In the cloud, access latency is determined
according to the suspension of time when the request is issued
and the time when that data is obtained. Small size data latency
is governed by network latency, and the latency is estimated

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 31

b) Database Custom Partitioning
The database is divided into three partitions according to the

patients’ status. The three statuses include active
Table 1. Example of data coding

Textual Code
Easy 1

medium 2
hard 3

patients, inactive patients, dead patients whose data are
placed in hot partition, warm partition, and cold partition,
respectively, as shown in Figure 2. The data of active patients
are considered as hot data and they are stored in the partition
called hot. The hot partition has an identical copy that is
always stored in the main memory. Any active patient data can
be moved to warm partition for cases where the patient is
discharged or stops the therapy exercises. The data can be
moved to cold partition for dead patients. When the data are
moved to the warm partition or cold partition, they are
completely deleted from the hot partition and also from their
corresponding main memory image. The inactive status of the
patient can be changed to active or discharged at any time.
After changing the status of the inactive patient, the data are
immediately moved to the corresponding partition of the new
status. The cold partition contains the data of the dead patients
and their status cannot be changed to other statuses. Any
changes in the hot partition such as adding or deleting patients’
data are immediately synchronised with the copy in the main
memory. All of the operations of data movement and the
manipulation of hot partition are performed by the data
manager in the application server-side.

The custom partitioning filters the data in the disk-based
database. Therefore, only the hot data have an identical copy
in the main memory. In this case, the memory for the evicted
data of inactive and dead patients removes the internal tracks,
keys, and indexed fields. The internal tracks, keys, and
indexed fields are deleted from the hot partition copy in the
main memory when the patients’ data are moved from the hot
partition. When the patients’ data are moved (for example,
inactive patient becomes active) or added (registration of a
new patient or current active patients play more games) to the
hot partition, all the information are synchronised to the hot
partition image in the main memory of the application server-
side.

b. Main Memory Copy of Hot Partition (Cache)
The proposed solution provides a database caching system

that can cache a huge amount of data like the cache memory
database while allowing the data manager to choose which
data that need to be cached (not all the database such as the
cache memory database). The main memory copy is based on
ACID (atomicity, consistency, isolation, durability) which
provides strong consistency of the data. Moreover, it keeps all
the calculated and derived values. Hence, there is no need to
recalculate and derive the data whenever they are required by
users.

The main advantage of the proposed main memory copy of
the hot partition is its selectiveness. The proposed solution
allows caching the currently used data (data of active patients)
to the main memory, unlike the cache memory databases that
store the entire copy of the database in the main memory.
Caching is only done on the data that need to be cached to
increase memory size savings. Another advantage is the
reduced database lookups overhead as the data manager
knows which partition contains the required data. This step is
performed by adding one column to the patients’ data for the
current status that tells the system the partition of the patients’
data. Besides that, the hot partition is larger than the available
cache space. LRU algorithm is used to manage the data in the
cache and decides which record should stay in the cache and
which one should be evicted to the hot partition in the disk-
based database. It also minimises the number of reading
operations from the MIRA cloud that reduces the monetary
cost of the whole service. It is believed that the proposed
solutions can solve the above-mentioned problems.

c. Cloud Service Cost
When the patients’ data are required, a read operation is sent

to the MIRA cloud. Every time the data are read from the
cloud, the monetary cost is charged for reading operations and
network consumption. Therefore, the more the data are read
from the cloud, charges more money. The proposed system
reads any piece of data only once before storing the data in the
application server-side in the main memory copy of hot
partition for any subsequent access. Whenever there is a read
request of data, the proposed system searches for the requested
data in the main memory copy of the hot partition. If the data
are not in memory, the data can be retrieved from the cloud. In
order to provide optimised read operation, the system
performs event-derived synchronisation of the hot partition in
the disk-based database and the main memory copy in the
application server-side. It allows users to set periodic and
manual download from the cloud. This mechanism reduces the
number of reading operations from the cloud, which charges
the monetary cost for every read operation, network
consumption, and data retrieval.

IV. MATHEMATICAL MODEL

This section discusses all the achieved optimisations of the

proposed framework, and the modelling part is conducted to
derive a mathematical equation that shows how latency, cost,
and memory savings are optimised. Developed mathematical
equations are the objective function for the process of
optimisation. The mathematical models for every optimisation
are as follows:
A. Access Latency Optimisation

The data access latency for a client is caused by cloud
(network), hard disk drive, and main memory latencies, which
are discussed in detail in the next three subsections.

Cloud latency: In the cloud, access latency is determined
according to the suspension of time when the request is issued
and the time when that data is obtained. Small size data latency
is governed by network latency, and the latency is estimated

30

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 32

using the round trip time (RTT) [40] between the cloud (the
source) and application server (destination) and vice versa that
is calculated according to Eq. (1).

() 0.02 distances() 5RRT ms km=  + (1)
Where, 0.02 is the latency for each kilometer in which

distance(km) denotes the distance between the client and the
server, and the estimated time for routing latency is 5.

HDD latency: HDD latency is measured using spindle
speed, which is usually given in rotations per minute [41].
HDD latency is usually measured in the millisecond and
calculated using Eq. (2):

()()1/ / 60 0.5 1000ALHDD SpindleSpeed=   (2)
Where ALHDD is the average latency of the hard disk

drive. Moreover, the numbers of tracks to read are 1, 60, 0.5,
and 1,000 for the seconds of a minute, time to move the head,
and time needed to navigate the spindle to another track.
SpindleSpeed denotes the number of spindle rotations per
minute.

Memory latency: Memory access latency [42] is always
measured in the microsecond and calculated using Eq. (3).

(1)ALMEM h Tc h M=  + −  (3)
Where ALMEM shows the average latency of memory.

Furthermore, h, (1-h), Tc, and M represent the hit rate, the miss
rate, the time to access information from the cache, and the
miss penalty (time to access main memory). It is necessary to
consider the three types of latencies and how many times each
latency is met to measure the total time for a client to read the
data from the cloud. Therefore, the total latency for the request
issued to the cloud through the application server is calculated
using Eq. (4).

4 2 3TLatency RTT ALHDD ALMEM=  +  +  (4)
Where TLatency is the total latency of client request.

Likewise, the optimised total latency for a client in reading the
data from the cache of the application server-side is measured
using Eq. (5).

2 2OTLatency RTT ALMEM=  +  (5)
B. Cost Optimisation

The full history of the patients’ statistical data is read from
the cloud for every evaluation of the patients’ progress by the
physiotherapist. This step increases the cloud service cost and
access latency. Therefore, MIRA analysis of the data retrieval
system downloads the data only once. MIRA analysis server
has two types of data downloading, which are manual and
automatic. In the manual download, users can download the
required data immediately, whereas automatic download is a
time-based download that can be set by the users and run
automatically on time. In automatic download, every single
record of the data is downloaded only once before being stored
in the database server for any subsequent access by the
physiotherapist. The proposed mechanism guarantees no
repeated reading of the record from MIRA cloud DBaaS.

The data manager searches for the requested data in the
cache when the physiotherapist requested the data. If the data
are not in the cache, the data can be retrieved from the database
of the local database server. If the data do not exist in the cache
and database, users have to click on the download button to

retrieve data from the MIRA cloud. After retrieving the data
from the cloud, they are stored in the database and cache for
any subsequent access.

A read operation for all historical data of the patient is sent
to the cloud when the patients’ data is required for analysis.
Every time the data is read from the cloud, the monetary cost
is charged for reading operation and network consumption.
Thus, more money is charged when more data are read from
the cloud. The monetary service cost is calculated using two
separate costs, which include read cost and network
consumption cost, and it will be discussed in the next two
subsections.
Read cost. In the Microsoft Azure cloud, every read operation
is charged to the user. The cost is determined by multiplying
the number of reading operations with the reading cost of the
data center of the cloud as shown in Eq. (6):

cos cosR t Rno R t=  (6)
Where Rcost denotes the total cost of the total number of

reading operations in a month. Rno is the sum of reading
operations per month, and Rcost shows the cost applied by the
cloud for every read operation.

Network cost. The transfer of data from the cloud to the
client has to be paid by the user. For each gigabyte, there is a
monetary cost. Therefore, the reduction of data transferred
throughout the cloud network has a big impact on the overall
cost of the cloud service. The cloud network consumption cost
is calculated using Eq. (7).

cos cosN t Rno Dsize T t=   (7)
Where Ncost denotes the total cost of the total number of

data transfer operations in a month. Rno shows the sum of
reading operations per month. Dsize is the total data size
transferred throughout the cloud network and Tcost denotes
the cost applied by the cloud for every gigabyte of data
transfer.

The overall cost of the cloud service is the summation of the
read cost and the network consumption cost, which is
calculated as the following:

cos cos cosOT t R t N t= + (8)
The costs above are charged for every read operation of the

patients’ statistical data. However, every data record is only
read once from the cloud using the cache in the application
server-side. Every record of the data is read for the first time
before it is kept in the cache of the application server-side for
any subsequent access by the client. The subsequent accesses
are not charged for any monetary cost as they are performed
from the cache. Therefore, caching optimises the cloud cost,
and the optimisation is calculated using Eq. (9):

cos cos cosOT t R t Dsize N t= +  (9)
Where OTcost is the total cost after optimisation. The size

of the downloaded data is added to X, which is the
accumulated value for the data size downloaded from the
cloud, to measure the cost optimisation performed by the
cache. The number inside X increases according to the data
size of the current download that increases for every data
downloaded from the MIRA cloud.

The number inside X increases when the patient plays more
games until the status is changed to inactive or dead. Then, the

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 32

using the round trip time (RTT) [40] between the cloud (the
source) and application server (destination) and vice versa that
is calculated according to Eq. (1).

() 0.02 distances() 5RRT ms km=  + (1)
Where, 0.02 is the latency for each kilometer in which

distance(km) denotes the distance between the client and the
server, and the estimated time for routing latency is 5.

HDD latency: HDD latency is measured using spindle
speed, which is usually given in rotations per minute [41].
HDD latency is usually measured in the millisecond and
calculated using Eq. (2):

()()1/ / 60 0.5 1000ALHDD SpindleSpeed=   (2)
Where ALHDD is the average latency of the hard disk

drive. Moreover, the numbers of tracks to read are 1, 60, 0.5,
and 1,000 for the seconds of a minute, time to move the head,
and time needed to navigate the spindle to another track.
SpindleSpeed denotes the number of spindle rotations per
minute.

Memory latency: Memory access latency [42] is always
measured in the microsecond and calculated using Eq. (3).

(1)ALMEM h Tc h M=  + −  (3)
Where ALMEM shows the average latency of memory.

Furthermore, h, (1-h), Tc, and M represent the hit rate, the miss
rate, the time to access information from the cache, and the
miss penalty (time to access main memory). It is necessary to
consider the three types of latencies and how many times each
latency is met to measure the total time for a client to read the
data from the cloud. Therefore, the total latency for the request
issued to the cloud through the application server is calculated
using Eq. (4).

4 2 3TLatency RTT ALHDD ALMEM=  +  +  (4)
Where TLatency is the total latency of client request.

Likewise, the optimised total latency for a client in reading the
data from the cache of the application server-side is measured
using Eq. (5).

2 2OTLatency RTT ALMEM=  +  (5)
B. Cost Optimisation

The full history of the patients’ statistical data is read from
the cloud for every evaluation of the patients’ progress by the
physiotherapist. This step increases the cloud service cost and
access latency. Therefore, MIRA analysis of the data retrieval
system downloads the data only once. MIRA analysis server
has two types of data downloading, which are manual and
automatic. In the manual download, users can download the
required data immediately, whereas automatic download is a
time-based download that can be set by the users and run
automatically on time. In automatic download, every single
record of the data is downloaded only once before being stored
in the database server for any subsequent access by the
physiotherapist. The proposed mechanism guarantees no
repeated reading of the record from MIRA cloud DBaaS.

The data manager searches for the requested data in the
cache when the physiotherapist requested the data. If the data
are not in the cache, the data can be retrieved from the database
of the local database server. If the data do not exist in the cache
and database, users have to click on the download button to

retrieve data from the MIRA cloud. After retrieving the data
from the cloud, they are stored in the database and cache for
any subsequent access.

A read operation for all historical data of the patient is sent
to the cloud when the patients’ data is required for analysis.
Every time the data is read from the cloud, the monetary cost
is charged for reading operation and network consumption.
Thus, more money is charged when more data are read from
the cloud. The monetary service cost is calculated using two
separate costs, which include read cost and network
consumption cost, and it will be discussed in the next two
subsections.
Read cost. In the Microsoft Azure cloud, every read operation
is charged to the user. The cost is determined by multiplying
the number of reading operations with the reading cost of the
data center of the cloud as shown in Eq. (6):

cos cosR t Rno R t=  (6)
Where Rcost denotes the total cost of the total number of

reading operations in a month. Rno is the sum of reading
operations per month, and Rcost shows the cost applied by the
cloud for every read operation.

Network cost. The transfer of data from the cloud to the
client has to be paid by the user. For each gigabyte, there is a
monetary cost. Therefore, the reduction of data transferred
throughout the cloud network has a big impact on the overall
cost of the cloud service. The cloud network consumption cost
is calculated using Eq. (7).

cos cosN t Rno Dsize T t=   (7)
Where Ncost denotes the total cost of the total number of

data transfer operations in a month. Rno shows the sum of
reading operations per month. Dsize is the total data size
transferred throughout the cloud network and Tcost denotes
the cost applied by the cloud for every gigabyte of data
transfer.

The overall cost of the cloud service is the summation of the
read cost and the network consumption cost, which is
calculated as the following:

cos cos cosOT t R t N t= + (8)
The costs above are charged for every read operation of the

patients’ statistical data. However, every data record is only
read once from the cloud using the cache in the application
server-side. Every record of the data is read for the first time
before it is kept in the cache of the application server-side for
any subsequent access by the client. The subsequent accesses
are not charged for any monetary cost as they are performed
from the cache. Therefore, caching optimises the cloud cost,
and the optimisation is calculated using Eq. (9):

cos cos cosOT t R t Dsize N t= +  (9)
Where OTcost is the total cost after optimisation. The size

of the downloaded data is added to X, which is the
accumulated value for the data size downloaded from the
cloud, to measure the cost optimisation performed by the
cache. The number inside X increases according to the data
size of the current download that increases for every data
downloaded from the MIRA cloud.

The number inside X increases when the patient plays more
games until the status is changed to inactive or dead. Then, the

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 32

using the round trip time (RTT) [40] between the cloud (the
source) and application server (destination) and vice versa that
is calculated according to Eq. (1).

() 0.02 distances() 5RRT ms km=  + (1)
Where, 0.02 is the latency for each kilometer in which

distance(km) denotes the distance between the client and the
server, and the estimated time for routing latency is 5.

HDD latency: HDD latency is measured using spindle
speed, which is usually given in rotations per minute [41].
HDD latency is usually measured in the millisecond and
calculated using Eq. (2):

()()1/ / 60 0.5 1000ALHDD SpindleSpeed=   (2)
Where ALHDD is the average latency of the hard disk

drive. Moreover, the numbers of tracks to read are 1, 60, 0.5,
and 1,000 for the seconds of a minute, time to move the head,
and time needed to navigate the spindle to another track.
SpindleSpeed denotes the number of spindle rotations per
minute.

Memory latency: Memory access latency [42] is always
measured in the microsecond and calculated using Eq. (3).

(1)ALMEM h Tc h M=  + −  (3)
Where ALMEM shows the average latency of memory.

Furthermore, h, (1-h), Tc, and M represent the hit rate, the miss
rate, the time to access information from the cache, and the
miss penalty (time to access main memory). It is necessary to
consider the three types of latencies and how many times each
latency is met to measure the total time for a client to read the
data from the cloud. Therefore, the total latency for the request
issued to the cloud through the application server is calculated
using Eq. (4).

4 2 3TLatency RTT ALHDD ALMEM=  +  +  (4)
Where TLatency is the total latency of client request.

Likewise, the optimised total latency for a client in reading the
data from the cache of the application server-side is measured
using Eq. (5).

2 2OTLatency RTT ALMEM=  +  (5)
B. Cost Optimisation

The full history of the patients’ statistical data is read from
the cloud for every evaluation of the patients’ progress by the
physiotherapist. This step increases the cloud service cost and
access latency. Therefore, MIRA analysis of the data retrieval
system downloads the data only once. MIRA analysis server
has two types of data downloading, which are manual and
automatic. In the manual download, users can download the
required data immediately, whereas automatic download is a
time-based download that can be set by the users and run
automatically on time. In automatic download, every single
record of the data is downloaded only once before being stored
in the database server for any subsequent access by the
physiotherapist. The proposed mechanism guarantees no
repeated reading of the record from MIRA cloud DBaaS.

The data manager searches for the requested data in the
cache when the physiotherapist requested the data. If the data
are not in the cache, the data can be retrieved from the database
of the local database server. If the data do not exist in the cache
and database, users have to click on the download button to

retrieve data from the MIRA cloud. After retrieving the data
from the cloud, they are stored in the database and cache for
any subsequent access.

A read operation for all historical data of the patient is sent
to the cloud when the patients’ data is required for analysis.
Every time the data is read from the cloud, the monetary cost
is charged for reading operation and network consumption.
Thus, more money is charged when more data are read from
the cloud. The monetary service cost is calculated using two
separate costs, which include read cost and network
consumption cost, and it will be discussed in the next two
subsections.
Read cost. In the Microsoft Azure cloud, every read operation
is charged to the user. The cost is determined by multiplying
the number of reading operations with the reading cost of the
data center of the cloud as shown in Eq. (6):

cos cosR t Rno R t=  (6)
Where Rcost denotes the total cost of the total number of

reading operations in a month. Rno is the sum of reading
operations per month, and Rcost shows the cost applied by the
cloud for every read operation.

Network cost. The transfer of data from the cloud to the
client has to be paid by the user. For each gigabyte, there is a
monetary cost. Therefore, the reduction of data transferred
throughout the cloud network has a big impact on the overall
cost of the cloud service. The cloud network consumption cost
is calculated using Eq. (7).

cos cosN t Rno Dsize T t=   (7)
Where Ncost denotes the total cost of the total number of

data transfer operations in a month. Rno shows the sum of
reading operations per month. Dsize is the total data size
transferred throughout the cloud network and Tcost denotes
the cost applied by the cloud for every gigabyte of data
transfer.

The overall cost of the cloud service is the summation of the
read cost and the network consumption cost, which is
calculated as the following:

cos cos cosOT t R t N t= + (8)
The costs above are charged for every read operation of the

patients’ statistical data. However, every data record is only
read once from the cloud using the cache in the application
server-side. Every record of the data is read for the first time
before it is kept in the cache of the application server-side for
any subsequent access by the client. The subsequent accesses
are not charged for any monetary cost as they are performed
from the cache. Therefore, caching optimises the cloud cost,
and the optimisation is calculated using Eq. (9):

cos cos cosOT t R t Dsize N t= +  (9)
Where OTcost is the total cost after optimisation. The size

of the downloaded data is added to X, which is the
accumulated value for the data size downloaded from the
cloud, to measure the cost optimisation performed by the
cache. The number inside X increases according to the data
size of the current download that increases for every data
downloaded from the MIRA cloud.

The number inside X increases when the patient plays more
games until the status is changed to inactive or dead. Then, the

An Optimal Data Access Framework for Telerehabilitation System

31ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

V. EXPERIMENTS, RESULTS AND DISCUSSION

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 33

value of X is stored in the database. Even when the patients’
status is active, all of the old statistical data are stored in the
database and they are automatically moved to the cache. Thus,
the new downloads of the patients’ data begin from the last
point of the saved data.

The formula to measure the cost saved in every data
downloaded from the cloud is as follows. We applied the
transferred cost from Eq. (2) of the cloud for the data size
stored inside X using Eq. (10) to calculate the total cost of the
downloaded data without considering the cached data.

0
cos

n
k

k
C X N t

=

=  (10)

By considering that the old data are downloaded and kept in
the cache, the system only downloads the newly added data.
Therefore, Eq. (11) calculates the download cost for the newly
added data that are not previously downloaded. The
accumulative download of data from the cloud ensures that the
system does not download the same data in every access of
data. Every time the download operation takes place, it
retrieves the data from the last point of time when the data
were downloaded.

()1

0
cos

n
k k

k
Coptimized X X N t−

=

= − 

(11)

C. Memory Space Optimization
There are two-fold issues when employing eviction

algorithms in managing the memory space: 1) the cache still
preserves internal tracking of evicted records; and 2) it retains
keys and indexed fields of records after eviction. This study
used Apache Ignite library to create the cache memory image
of the hot partition. However, Apache Ignite uses LRU
algorithm as the main eviction technique for memory space
management. LRU algorithm has the two-fold issues that
waste the memory capacity [38].

It is necessary to avoid moving the data of cold and warm
partitions to the cache in preventing the cache from creating
internal tracks that keep the keys and indexed fields after they
are evicted from the memory. When they become hot data,
they are moved to the memory and the cache creates an
internal track for them. After they return to cold or warm
status, the cache deletes them from the memory including the
internal tracking, keys, and indexed fields.

The optimisation of memory space management can be
achieved through database partitioning that sorts the data to
active (hot), inactive (worm), or dead (cold). The partitioning
of data according to the patients’ status is performed by the
data manager, which is an intermediate layer between the
analysis application from one side and cache with the database
from the other side. It transfers the patients’ data between the
partitions according to their status. It also removes all the
related internal tracks for all the patients’ records after the
status is changed from active to inactive or dead.

LRU algorithm creates an internal tracking to identify
which records are not accessed anymore and select them for
eviction to the disk-based database. Even after removing all
records from the memory, the corresponding internal trackings

are retained in the cache for future tracking. In this case, the
number of records is different from the number of internal
tracks, keys, and indexed fields. The occupied space of the
allocated main memory to the cache is measured using Eq.
(12).

()
0 0

() ()
n k

i j j j
i j

SizeOf R SizeOf IT SizeOf keys indexes
= =

+ + +  (12)

Where, Ri is the size of the record i, i∈ [0-n]. Likewise, ITj
shows the size of the internal track j, j∈ [0-k]. Keysj is the size
of the keys and indexed fields j, j∈ [0-k] and Indexesj denotes
the size of the indexed fields j,j∈ [0-k].

This internal tracking increases the operating cost of
memory management and lessens the evicted memory space.
Moreover, LRU algorithm retains the keys and indexed fields
of the evicted records that reduce the memory capacity for
databases that have many indexed fields.

The proposed cache system reduces the overhead by
moving the management of memory to the database level and
the patient’s data that are not accessed anymore to warm
partition and cold partition when the patient is dead. The cache
contains an exact copy of the data in the hot partition. Once
the data are moved from hot partition, they are completely
deleted from the main memory image, including the internal
tracks, keys, and indexed fields. Any changes in the hot
partition, such as adding or deleting patient data, are
immediately synchronised with the copy in the main memory.
Removing records with their internal tracks, keys, and indexed
fields can increase the potential savings of the memory spaces.
In this case, the number of records is the same as the number
of internal tracks, keys, and indexed fields.

In order to measure the optimisation of memory space, we
introduce Eq. (13) which calculates the size of all records and
their internal tracks, keys, and indexed fields.

()
0

() ()
n

i i i i
i

SizeOf R SizeOf IT SizeOf keys indexes
=

+ + + (13) (

Generally, memory space optimisation is based on saving
memory spaces that are wasted by eviction algorithm such as
LRU and LFU algorithms [43]. For example, if the data is
frequency accessed by the physiography, the location of the
data will be the hot partition, which leads to reduce the
memory space as the data will be in the cache memory of hot
partition. This will save memory space optimization.

V. Experiments, Results, and Discussion

This section discusses the dataset, experiment setup of the
proposed framework, and results. The experiments aim to
evaluate the proposed framework from the perspectives of
latency, the monetary cost, and memory savings
optimisations. The experimental study performs the
comparison using cache memory and database. By performing
the database it will take a longer time in accessing with involve
three partitions (Hot, Warm and Cold), which will be
discussed in detail in the next subsections.

32

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 34

A. Dataset and Experiment Setup
This study used real patient data from Perkeso Tun Razak

Rehabilitation Centre for the implementation process. The
patients played MIRA games from the year 2018 to 2019. The
number of patients is more than 145 in which the minimum
number of sessions for each patient is two and the maximum
number of sessions is 547. The total number of records is
5,541 in which each record consists of 41 fields that have
different numbers, text, and dates. The data are prepared to fit
to the proposed approach table. Data preparation includes
distributing the data of each session in one record by
transforming the values of some columns to fields, coding
some text values, and converting all date formats to one
uniform format.

B. Latency Experiment
For the measurement of latency optimisation, this study

conducted a real latency experiment using real-world MIRA
cloud in Finland, MIRA analysis application and database
server located in Nilai, Malaysia, and the client of Perkeso Tun
Razak Rehabilitation Centre located in Melaka, Malaysia. The
experiment is conducted using the proposed MIRA analysis
application and patients’ data from Perkeso. Perkeso Tun
Razak Rehabilitation Centre has one MIRA terminal and
receives an average of ten patients daily.

This study conducted a real latency experiment using real-
world application server and database servers to measure
latency optimisation. The same amount of data is read from
the database that is stored in the HHD of the database server
and the cache that is stored in the main memory of the
application server. The experiment is conducted using external
client and MIRA analysis application that use two tables from
the database, the images in cache, and the details as shown in
Table 2.

Table 2. Details of database tables

Table name Preference All_Var_Sessions
Columns
number

6 columns
(4 numbers, 2 strings)

44 columns
(34 numbers, 3 dates, 7
strings)

Records
number

2,000 2,000

Figure 4 shows the reading and writing operation of the
data. The purpose of this measurement is to show the speed of
reading and writing operation on the cloud after utilizing the
caching system, which leads to improve the system
performance. The comparison is based on two sections:
preferences patients’ records and all patients’ records.
Preferences data is those that need to perform algorithms for
calculation. Preferences operation is performed only at the hot
partition. From the comparison, it is shown that using cache
memory performs better than the other one.

Figure 4.a shows that the cache has an advantage over the
disk-based database for data writing. The data writing in the
cache is faster by more than 5.5 times of writing operations
compared to the disk-based database. For the
All_Var_Sessions, the writing operations of the cache are
faster than disk-based database by more than four times. The

superiority of the cache in the writing operations is because
the main memory (RAM) is faster than the hard disk (HHD).

Overall, the cached database has more advantages than the
disk-based database because the access time of main memory
is always measured in nanoseconds, whereas HDD is
measured in milliseconds for the integrated development
environment (IDE), small computer system interface (SCSI),
or serial advanced technology attachment (SATA). Therefore,
there is a difference in the access time of the memory and
HHD that can reach 105. The speed difference allows better
performance of the main memory than HHD.

The majority of the operations are read in the MIRA
analysis application. Read operations take up 97% of the
operations performed on MIRA analysis application and the
remaining 3% of the operations is on write operations. Most
of the focus is paid for the read operations that are crucial in
the performance of the system. The results show that read
operations in the cache have one advantage over the disk-
based database. Figure 4b shows the read operations from the
cache that are performed in the first table, namely Preference,
which are faster than disk-based table by 11.5 times. For the
second table, namely All_Var_Sessions, the read operations
from the cache are faster by seven times than the read
operations performed in the disk-based table.

 Fig.4 (a). The results for write operation

An Optimal Data Access Framework for Telerehabilitation System

33ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 36

July
31st

0.02 545
5

109.
1

374 7.48
August
1st

0.02 578
5

115.
7

330 6.6
August
2nd

0.02 578
5

115.
7

0 0
August
3rd

0.02 578
5

115.
7

0 0
August
4th

0.02 600
4

120.
08

219 4.38
August
5th

0.02 635
2

127.
04

348 6.96
A

ugust
6th

0.02 670
6

134.
12

354 7.08
August
7th

0.02 692
6

138.
52

220 4.4
August
8th

0.02 725
3

145.
06

327 6.54
August
9th

0.02 771
9

154.
38

466 9.32
Totals 131

941
263

8.82
771
8

154.3
6 x factor optimisation 17.10

VI. Discussion
Remote medicine, specifically telerehabilitation, has been

rapidly expanding as an alternative or a complement to
conventional face-to-face physical therapy since its
development at the turn of the 21st century [44].
Telerehabilitation therapy enables the clinicians and
rehabilitation specialists to monitor the patient's at-home
recovery frequently in order to intervene earlier [45-47].
MIRA is one of the most popular telerehabilitation systems
[48], which provides meaningful feedback such as statistical
data about the patients’ movements from the devices equipped
with motion tracking sensors [31-33].

In MIRA platform, the statistical data of the patients’
movement in the temporary storage and then is synchronised
to the storage service of online cloud data [49]. So, users can
retrieve their data anytime and anywhere from every device.
Also, they can take care of themselves via these systems
according to their health status [12]. However, firstly, this
process increases the main memory usage; moreover, it
exposes extra financial cost to the user due to using cloud
service. In addition, reading the data from the cloud via the
internet servers causes latency problem. To solve this problem,
cache memory is employed in this paper. Main memory
database and cache employment are two popular solutions that
use internal tracking in the main memory to keep track of the
records that are not recently accessed so they can be evicted to
the disk [50]. However, in such solutions, the remarkable
space of the memory is used for applications with many keys
and secondary indexes because of maintaining them all
indexed fields of evicted records in the main memory.

To overcome the aforementioned problem, a partitioning
technique is presented in this paper. To this end, a custom
partitioning is applied to the database which categorised it into
hot/active, warm/inactive, and cold/dead partitions according
to the status of the patient. The hot/active partition belongs to
active patients; the warm/inactive partition belongs to the
patients who are not currently active or have been discharged,
and the cold/dead partition belongs to the patient with inactive
status; for example, dead patients. Consequently, only the data
that belongs to the hot partition were moved to the main
memory. Furthermore, the data of the patients are retained in
a different partition in the database according to their new
status and the changes are synchronised to the main memory
copy. Generally, this partitioning of the database leads to
enhance the potential memory space.

Moreover, a cache memory copy of the application server-
side is provided for the database that `is stored in the cloud.

This cache memory image allows the application to read the
data directly from the local memory that overcomes the
latency problem that occurred during the reading of data from
the cloud hard disks. In addition, utilizing the cache memory
image results in minimizing the overall cost of the cloud
service by decreasing the number of reading operations from
the cloud.

The results revealed our proposed framework is able to
produce good quality solutions in terms of utilizing the main
memory space and reducing the latency and read operations
from the cloud, therefore, reducing the monetary cost.
Although the finding of the proposed work is of interest, the
data is collected only from the MIRA games for evaluating the
proposed framework, which can be considered as a limitation
of this work. Therefore, for future work, the performance of
the presented scheme needs to be assessed using the data
collected from other exergames.

VII. Conclusion
The rehabilitation systems face problems in reducing the

monetary cost of the whole cloud service and reducing the
footprint of the main memory space. On the other hand, users
encounter long latency when the required data need to be read
from the cloud via the internet and the HDD of the cloud
servers. Previous solutions such as the main memory database
and cache use internal tracking in the main memory to keep
track of the records that are not accessed so they can be evicted
to the disk. However, this mechanism leads to reduce the
memory space for applications with many keys and secondary
indexes due to retaining the keys and all indexed fields of
evicted records in the main memory. In this work, we propose
an optimal data access framework for telerehabilitation system
that divides the database into hot/active, warm/inactive, and
cold/dead partitions according to the status of the patient.
Moreover, a cache memory image in the application server is
provided for the hot partition of the cloud database.
Furthermore, the main memory image is created using Apache
Ignite which allows the database caching system to cache a
huge amount of data like the cache memory database. In
addition, it allows the user to choose the data which needs to
be cached using the custom partitioning. The main memory
copy can reduce the number of reading operations from the
cloud when the user requested the data. It also saves the space
of the main memory by only caching the hot partition of the
database that does not require the internal track of records.

Acknowledgment
 The author wishes to send his/her appreciation to the editor

and anonymous referees for their constructive comments and
criticism. This work is supported by the Newton-Ungku Omar
Fund from Malaysia Industry Government Group from High
Technology (MIGHT) and code grant USIM/INT-
NEWTON/FST/IHRAM/053000/41616.

REFERENCES

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 35

Fig.4 (b). The results for read operation

C. Cloud Service Cost Experiment
A full historical data of the patient’s statistical data is

required to compare the progress of the patient’s performance
by the physiotherapist. Therefore, it is recommended to
perform the incremental download of the data from the last
point of time when evaluating the patient’s progress to avoid
the increase of monetary cost as the amount of data becomes
bigger when the patient plays more games.

This study measured the cost-saving of cloud service in the
Perkeso Tun Razak Rehabilitation Center for the download
operations of the patients’ statistical data from July 1st until
August 9th, 2019. The download operation is performed once
a day after all the patients completed the required movements
and games. Table 3 shows the details and cost calculation with
numerical results for the optimised cost of the downloaded
data.

Table 3 compares two networks with the normal and
optimised cost from 1st July until 9th August. The purpose of
this measurement is to depict how the proposed framework
reduces the cloud service cost. The table shows that caching
the data reduces the cloud service cost. Caching the old data
in the server application and performing the incremental
download of the newly added data can reduce the monetary
cost by 17 times. The incremental download of data reduces
the sum of data that is transferred from the cloud to the
application server. The result shows that the optimised cost
gave a better result in reducing the cost up to 94% compared
with the normal cost.

D. Memory Savings
This study experimented and compared the memory space

used by the conventional approach and the proposed approach
to measure the optimisation achieved in the memory space for
the cache by the proposed approach. The experiment used the
database of the Perkeso Tun Razak Rehabilitation Centre. The
experiment runs two caches for a month on the same dataset
by the same number of users before calculating the memory
space occupied by each cache.

Figure 5 depicts the saved memory space in our proposed
framework and other conventional approaches. The goal of
this measurement is to show how the proposed approach is
efficient in terms of consuming memory space. As can be
observed it reduces the used memory space by 10% which is
the required space for internal tracks, keys, and indexed fields
for the evicted records. The information is not used after the
movement of hot, warm, and cold records in the side of the
database by the data manager. Therefore, our proposed
scheme outperforms other conventional approaches using the
normal database.

Fig.5. Memory savings

Table 3. Data download details, cost calculation, and cost
optimisation results

Date Transfer/N
etwork cost

X
(KB)

Cost Cac
he

downl
oad
(KB)

Optim
ised cost July

1st
0.02 1 0.02 0 0

July
2nd

0.02 23 0.46 22 0.44
July

3rd
0.02 23 0.46 0 0

July
4th

0.02 23 0.46 0 0
July

5th
0.02 179 3.58 156 3.12

July
6th

0.02 179 3.58 0 0
July

7th
0.02 179 3.58 0 0

July
8th

0.02 428 8.56 249 4.98
July

9th
0.02 736 14.7

2
308 6.16

July
10th

0.02 106
5

21.3 329 6.58
July

11th
0.02 141

3
28.2
6

348 6.96
July

12th
0.02 141

3
28.2
6

0 0
July

13th
0.02 141

3
28.2
6

0 0
July

14th
0.02 170

7
34.1
4

294 5.88
July

15th
0.02 203

3
40.6
6

326 6.52
July

16th
0.02 243

7
48.7
4

404 8.08
July

17th
0.02 285

8
57.1
6

421 8.42
July

18th
0.02 285

8
57.1
6

0 0
July

19th
0.02 285

8
57.1
6

0 0
July

20th
0.02 285

8
57.1
6

0 0
July

21st
0.02 325

3
65.0
6

395 7.9
July

22nd
0.02 361

9
72.3
8

366 7.32
July

23rd
0.02 394

0
78.8 321 6.42

July
24th

0.02 427
2

85.4
4

332 6.64
July

25th
0.02 455

2
91.0
4

280 5.6
July

26th
0.02 455

2
91.0
4

0 0
July

27th
0.02 455

2
91.0
4

0 0
July

28th
0.02 483

3
96.6
6

281 5.62
July

29th
0.02 483

3
96.6
6

0 0
July

30th
0.02 508

1
101.
62

248 4.96

Cache Data Base
Preference 0.09 1.04
All_Var_Sessions 0.15 1.11

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

)

VI. DISCUSSION

34

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 36

July
31st

0.02 545
5

109.
1

374 7.48
August
1st

0.02 578
5

115.
7

330 6.6
August
2nd

0.02 578
5

115.
7

0 0
August
3rd

0.02 578
5

115.
7

0 0
August
4th

0.02 600
4

120.
08

219 4.38
August
5th

0.02 635
2

127.
04

348 6.96
A

ugust
6th

0.02 670
6

134.
12

354 7.08
August
7th

0.02 692
6

138.
52

220 4.4
August
8th

0.02 725
3

145.
06

327 6.54
August
9th

0.02 771
9

154.
38

466 9.32
Totals 131

941
263

8.82
771
8

154.3
6 x factor optimisation 17.10

VI. Discussion
Remote medicine, specifically telerehabilitation, has been

rapidly expanding as an alternative or a complement to
conventional face-to-face physical therapy since its
development at the turn of the 21st century [44].
Telerehabilitation therapy enables the clinicians and
rehabilitation specialists to monitor the patient's at-home
recovery frequently in order to intervene earlier [45-47].
MIRA is one of the most popular telerehabilitation systems
[48], which provides meaningful feedback such as statistical
data about the patients’ movements from the devices equipped
with motion tracking sensors [31-33].

In MIRA platform, the statistical data of the patients’
movement in the temporary storage and then is synchronised
to the storage service of online cloud data [49]. So, users can
retrieve their data anytime and anywhere from every device.
Also, they can take care of themselves via these systems
according to their health status [12]. However, firstly, this
process increases the main memory usage; moreover, it
exposes extra financial cost to the user due to using cloud
service. In addition, reading the data from the cloud via the
internet servers causes latency problem. To solve this problem,
cache memory is employed in this paper. Main memory
database and cache employment are two popular solutions that
use internal tracking in the main memory to keep track of the
records that are not recently accessed so they can be evicted to
the disk [50]. However, in such solutions, the remarkable
space of the memory is used for applications with many keys
and secondary indexes because of maintaining them all
indexed fields of evicted records in the main memory.

To overcome the aforementioned problem, a partitioning
technique is presented in this paper. To this end, a custom
partitioning is applied to the database which categorised it into
hot/active, warm/inactive, and cold/dead partitions according
to the status of the patient. The hot/active partition belongs to
active patients; the warm/inactive partition belongs to the
patients who are not currently active or have been discharged,
and the cold/dead partition belongs to the patient with inactive
status; for example, dead patients. Consequently, only the data
that belongs to the hot partition were moved to the main
memory. Furthermore, the data of the patients are retained in
a different partition in the database according to their new
status and the changes are synchronised to the main memory
copy. Generally, this partitioning of the database leads to
enhance the potential memory space.

Moreover, a cache memory copy of the application server-
side is provided for the database that `is stored in the cloud.

This cache memory image allows the application to read the
data directly from the local memory that overcomes the
latency problem that occurred during the reading of data from
the cloud hard disks. In addition, utilizing the cache memory
image results in minimizing the overall cost of the cloud
service by decreasing the number of reading operations from
the cloud.

The results revealed our proposed framework is able to
produce good quality solutions in terms of utilizing the main
memory space and reducing the latency and read operations
from the cloud, therefore, reducing the monetary cost.
Although the finding of the proposed work is of interest, the
data is collected only from the MIRA games for evaluating the
proposed framework, which can be considered as a limitation
of this work. Therefore, for future work, the performance of
the presented scheme needs to be assessed using the data
collected from other exergames.

VII. Conclusion
The rehabilitation systems face problems in reducing the

monetary cost of the whole cloud service and reducing the
footprint of the main memory space. On the other hand, users
encounter long latency when the required data need to be read
from the cloud via the internet and the HDD of the cloud
servers. Previous solutions such as the main memory database
and cache use internal tracking in the main memory to keep
track of the records that are not accessed so they can be evicted
to the disk. However, this mechanism leads to reduce the
memory space for applications with many keys and secondary
indexes due to retaining the keys and all indexed fields of
evicted records in the main memory. In this work, we propose
an optimal data access framework for telerehabilitation system
that divides the database into hot/active, warm/inactive, and
cold/dead partitions according to the status of the patient.
Moreover, a cache memory image in the application server is
provided for the hot partition of the cloud database.
Furthermore, the main memory image is created using Apache
Ignite which allows the database caching system to cache a
huge amount of data like the cache memory database. In
addition, it allows the user to choose the data which needs to
be cached using the custom partitioning. The main memory
copy can reduce the number of reading operations from the
cloud when the user requested the data. It also saves the space
of the main memory by only caching the hot partition of the
database that does not require the internal track of records.

Acknowledgment
 The author wishes to send his/her appreciation to the editor

and anonymous referees for their constructive comments and
criticism. This work is supported by the Newton-Ungku Omar
Fund from Malaysia Industry Government Group from High
Technology (MIGHT) and code grant USIM/INT-
NEWTON/FST/IHRAM/053000/41616.

REFERENCES

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 37

[1] Patel, S. and A. Patel, Abig data revolution in health care
sector: Opportunities, challenges and technological
advancements. International Journal of Information, 2016.
6(1/2): p. 155-162.

[2] Vogt, S., et al., Virtual reality interventions for balance
prevention and rehabilitation after musculoskeletal lower
limb impairments in young up to middle-aged adults: A
comprehensive review on used technology, balance outcome
measures and observed effects. International journal of
medical informatics, 2019.

[3] Ismail, W., et al. A Conceptual Model of Hybrid Monitoring
Rehabilitation Progress of Stroke Patients: A Case Study of
a Public Tertiary Hospital in Malaysia. in 2019 IEEE 6th
International Conference on Industrial Engineering and
Applications (ICIEA). 2019. IEEE.

[4] Maggio, M.G., et al., The Growing Use of Virtual Reality in
Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping
Review. Journal of the National Medical Association, 2019.

[5] Mehta, D., et al., Digitalization in Health Care Sector: A HR
Analytics Perspective.

[6] Deng, Y., Gao, F., & Chen, H. Angle Estimation for Knee
Joint Movement Based on PCA-RELM Algorithm.
Symmetry, 2020, 12(1), p. 130.

[7] Ayed, I., et al., Vision-Based Serious Games and Virtual
Reality Systems for Motor Rehabilitation: A Review Geared
Toward a Research Methodology. International journal of
medical informatics, 2019.

[8] Valentina, M., et al., Virtual reality in rehabilitation and
therapy. Acta Clinica Croatica, 2013. 52(4.): p. 453-457.

[9] Feldman, B., E.M. Martin, and T. Skotnes, Big data in
healthcare hype and hope. Dr. Bonnie, 2012. 360: p. 122-
125.

[10] Dhayne, H., et al., In Search of Big Medical Data Integration
Solutions-A Comprehensive Survey. IEEE Access, 2019. 7:
p. 91265-91290.

[11] Raghupathi, W. and V. Raghupathi, Big data analytics in
healthcare: promise and potential. Health information
science and systems, 2014. 2(1): p. 3.

[12] Goli-Malekabadi, Z., M. Sargolzaei-Javan, and M.K.
Akbari, An effective model for store and retrieve big health
data in cloud computing. Computer methods and programs
in biomedicine, 2016. 132: p. 75-82.

[13] Abadi, D.J., et al. The design of the borealis stream
processing engine. in Cidr. 2005.

[14] Reddy, V.K., B.T. Rao, and L. Reddy, Research issues in
cloud computing. Global Journal of Computer Science and
Technology, 2011.

[15] Khalifa, A., Tele-Rehabilitation Games on the Cloud: A
Survey and a Vision. American Journal of Computer Science
and Engineering Survey (AJCSES), 2015. 3(2): p. 143-51.

[16] Cai, H., et al., IoT-based big data storage systems in cloud
computing: perspectives and challenges. IEEE Internet of
Things Journal, 2016. 4(1): p. 75-87.

[17] Mansouri, Y., A.N. Toosi, and R. Buyya, Cost optimization
for dynamic replication and migration of data in cloud data
centers. IEEE Transactions on Cloud Computing, 2017.

[18] Zhang, Q., et al., CHARM: A cost-efficient multi-cloud data
hosting scheme with high availability. IEEE Transactions on
Cloud computing, 2015. 3(3): p. 372-386.

[19] Ndikumana, A., et al., Joint communication, computation,
caching, and control in big data multi-access edge
computing. IEEE Transactions on Mobile Computing, 2019.

[20] Gilheany, S., Ram is 100 thousand times faster than disk for
database access. Directions Magazine, 2003.

[21] Park, G.H., Memory system including a nonvolatile memory
and a volatile memory, and processing method using the
memory system. 2019, Google Patents.

[22] Chen, C.-H., et al., Data Prefetching and Eviction
Mechanisms of Cache memory Storage Systems Based on
Scheduling for Big Data Processing. IEEE Transactions on
Parallel and Distributed Systems, 2019.

[23] Agombar, J.P., et al., Optimizing the management of cache
memory. 2018, Google Patents.

[24] Fricker, C., P. Robert, and J. Roberts. A versatile and
accurate approximation for LRU cache performance. in 2012

24th International Teletraffic Congress (ITC 24). 2012.
IEEE.

[25] Shariff, A.A.M., N. Katuk, and N.H. Zakaria, An overview
to pre-fetching techniques for content caching of mobile
applications. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC),

[26] Gilman, G.R., et al. Challenges and Opportunities of DNN
Model Execution Caching. in Proceedings of the Workshop
on Distributed Infrastructures for Deep Learning. 2019.

[27] Shim, J., P. Scheuermann, and R. Vingralek, Proxy cache
algorithms: Design, implementation, and performance. IEEE
Transactions on Knowledge and Data Engineering, 1999.
11(4): p. 549-562.

[28] O'neil, E.J., P.E. O'neil, and G. Weikum, The LRU-K page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 1993. 22(2): p. 297-306.

[29] Wilson, J.D., et al., Can shoulder range of movement be
measured accurately using the Microsoft Kinect sensor plus
Medical Interactive Recovery Assistant (MIRA) software?
Journal of shoulder and elbow surgery, 2017. 26(12): p.
e382-e389.

[30] Moldovan, I., et al. Development of a new scoring system
for bilateral upper limb function and performance in children
with cerebral palsy using the MIRA interactive video games
and the Kinect sensor. in Proceedings of the International
Conference on Disability, Virtual Reality and Associated
Technologies. 2014.

[31] Moldovan, I., et al. Virtual rehabilitation programme using
the MIRA platform, Kinect and Leap Motion sensors in an
81 years old patient with ischemic stroke. in 2017 E-Health
and Bioengineering Conference (EHB). 2017. IEEE.

[32] Osgouei, R.H., D. Soulsbv, and F. Bello. An Objective
Evaluation Method for Rehabilitation Exergames. in 2018
IEEE Games, Entertainment, Media Conference (GEM).
2018. IEEE.

[33] Yu, X. and S. Xiong, A Dynamic Time Warping Based
Algorithm to Evaluate Kinect-Enabled Home-Based
Physical Rehabilitation Exercises for Older People. Sensors,
2019. 19(13): p. 2882.

[34] Călin, A., et al., MIRA-UPPER LIMB REHABILITATION
SYSTEM USING MICROSOFT KINECT. Studia
Universitatis Babes-Bolyai, Informatica, 2011. 56(4).

[35] Azure services platform. 2009 2009-01-23]; Available from:
http://www.microsoft.com/azure.

[36] Zukowski, M., et al., MonetDB/X100-A DBMS In The CPU
Cache. IEEE Data Eng. Bull., 2005. 28(2): p. 17-22.

[37] Zheludkov, M. and T. Isachenko, High Performance cache
memory computing with Apache Ignite. 2017: Lulu. com.

[38] Acharya, S., Apache Ignite Quick Start Guide: Distributed
data caching and processing made easy. 2018: Packt
Publishing Ltd.

[39] Zhao, T., et al., Cloud-based medical image processing
system with anonymous data upload and download. 2013,
Google Patents.

[40] Joshi, P.S., Smoothing algorithm for round trip time (RTT)
measurements. 2008, Google Patents.

[41] Albeshri, A., C. Boyd, and J.G. Nieto. Geoproof: proofs of
geographic loc

[42] ation for cloud computing environment. in 2012 32nd
International Conference on Distributed Computing Systems
Workshops. 2012. IEEE.

[43] Qiu, M., et al., Energy-aware data allocation with hybrid
memory for mobile cloud systems. IEEE Systems Journal,
2014. 11(2): p. 813-822.

[44] Pavlo, A. and M. Aslett, What's really new with NewSQL?
ACM Sigmod Record, 2016. 45(2): p. 45-55.

[45] Chughtai, M., et al., The role of virtual rehabilitation in total
and unicompartmental knee arthroplasty. The journal of knee
surgery, 2019. 32(01): p. 105-110.

[46] Bozic, K.J., et al., Bundled payments in total joint
arthroplasty: targeting opportunities for quality
improvement and cost reduction. Clinical Orthopaedics and
Related Research®, 2014. 472(1): p. 188-193.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 36

July
31st

0.02 545
5

109.
1

374 7.48
August
1st

0.02 578
5

115.
7

330 6.6
August
2nd

0.02 578
5

115.
7

0 0
August
3rd

0.02 578
5

115.
7

0 0
August
4th

0.02 600
4

120.
08

219 4.38
August
5th

0.02 635
2

127.
04

348 6.96
A

ugust
6th

0.02 670
6

134.
12

354 7.08
August
7th

0.02 692
6

138.
52

220 4.4
August
8th

0.02 725
3

145.
06

327 6.54
August
9th

0.02 771
9

154.
38

466 9.32
Totals 131

941
263

8.82
771
8

154.3
6 x factor optimisation 17.10

VI. Discussion
Remote medicine, specifically telerehabilitation, has been

rapidly expanding as an alternative or a complement to
conventional face-to-face physical therapy since its
development at the turn of the 21st century [44].
Telerehabilitation therapy enables the clinicians and
rehabilitation specialists to monitor the patient's at-home
recovery frequently in order to intervene earlier [45-47].
MIRA is one of the most popular telerehabilitation systems
[48], which provides meaningful feedback such as statistical
data about the patients’ movements from the devices equipped
with motion tracking sensors [31-33].

In MIRA platform, the statistical data of the patients’
movement in the temporary storage and then is synchronised
to the storage service of online cloud data [49]. So, users can
retrieve their data anytime and anywhere from every device.
Also, they can take care of themselves via these systems
according to their health status [12]. However, firstly, this
process increases the main memory usage; moreover, it
exposes extra financial cost to the user due to using cloud
service. In addition, reading the data from the cloud via the
internet servers causes latency problem. To solve this problem,
cache memory is employed in this paper. Main memory
database and cache employment are two popular solutions that
use internal tracking in the main memory to keep track of the
records that are not recently accessed so they can be evicted to
the disk [50]. However, in such solutions, the remarkable
space of the memory is used for applications with many keys
and secondary indexes because of maintaining them all
indexed fields of evicted records in the main memory.

To overcome the aforementioned problem, a partitioning
technique is presented in this paper. To this end, a custom
partitioning is applied to the database which categorised it into
hot/active, warm/inactive, and cold/dead partitions according
to the status of the patient. The hot/active partition belongs to
active patients; the warm/inactive partition belongs to the
patients who are not currently active or have been discharged,
and the cold/dead partition belongs to the patient with inactive
status; for example, dead patients. Consequently, only the data
that belongs to the hot partition were moved to the main
memory. Furthermore, the data of the patients are retained in
a different partition in the database according to their new
status and the changes are synchronised to the main memory
copy. Generally, this partitioning of the database leads to
enhance the potential memory space.

Moreover, a cache memory copy of the application server-
side is provided for the database that `is stored in the cloud.

This cache memory image allows the application to read the
data directly from the local memory that overcomes the
latency problem that occurred during the reading of data from
the cloud hard disks. In addition, utilizing the cache memory
image results in minimizing the overall cost of the cloud
service by decreasing the number of reading operations from
the cloud.

The results revealed our proposed framework is able to
produce good quality solutions in terms of utilizing the main
memory space and reducing the latency and read operations
from the cloud, therefore, reducing the monetary cost.
Although the finding of the proposed work is of interest, the
data is collected only from the MIRA games for evaluating the
proposed framework, which can be considered as a limitation
of this work. Therefore, for future work, the performance of
the presented scheme needs to be assessed using the data
collected from other exergames.

VII. Conclusion
The rehabilitation systems face problems in reducing the

monetary cost of the whole cloud service and reducing the
footprint of the main memory space. On the other hand, users
encounter long latency when the required data need to be read
from the cloud via the internet and the HDD of the cloud
servers. Previous solutions such as the main memory database
and cache use internal tracking in the main memory to keep
track of the records that are not accessed so they can be evicted
to the disk. However, this mechanism leads to reduce the
memory space for applications with many keys and secondary
indexes due to retaining the keys and all indexed fields of
evicted records in the main memory. In this work, we propose
an optimal data access framework for telerehabilitation system
that divides the database into hot/active, warm/inactive, and
cold/dead partitions according to the status of the patient.
Moreover, a cache memory image in the application server is
provided for the hot partition of the cloud database.
Furthermore, the main memory image is created using Apache
Ignite which allows the database caching system to cache a
huge amount of data like the cache memory database. In
addition, it allows the user to choose the data which needs to
be cached using the custom partitioning. The main memory
copy can reduce the number of reading operations from the
cloud when the user requested the data. It also saves the space
of the main memory by only caching the hot partition of the
database that does not require the internal track of records.

Acknowledgment
 The author wishes to send his/her appreciation to the editor

and anonymous referees for their constructive comments and
criticism. This work is supported by the Newton-Ungku Omar
Fund from Malaysia Industry Government Group from High
Technology (MIGHT) and code grant USIM/INT-
NEWTON/FST/IHRAM/053000/41616.

REFERENCES

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 37

[1] Patel, S. and A. Patel, Abig data revolution in health care
sector: Opportunities, challenges and technological
advancements. International Journal of Information, 2016.
6(1/2): p. 155-162.

[2] Vogt, S., et al., Virtual reality interventions for balance
prevention and rehabilitation after musculoskeletal lower
limb impairments in young up to middle-aged adults: A
comprehensive review on used technology, balance outcome
measures and observed effects. International journal of
medical informatics, 2019.

[3] Ismail, W., et al. A Conceptual Model of Hybrid Monitoring
Rehabilitation Progress of Stroke Patients: A Case Study of
a Public Tertiary Hospital in Malaysia. in 2019 IEEE 6th
International Conference on Industrial Engineering and
Applications (ICIEA). 2019. IEEE.

[4] Maggio, M.G., et al., The Growing Use of Virtual Reality in
Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping
Review. Journal of the National Medical Association, 2019.

[5] Mehta, D., et al., Digitalization in Health Care Sector: A HR
Analytics Perspective.

[6] Deng, Y., Gao, F., & Chen, H. Angle Estimation for Knee
Joint Movement Based on PCA-RELM Algorithm.
Symmetry, 2020, 12(1), p. 130.

[7] Ayed, I., et al., Vision-Based Serious Games and Virtual
Reality Systems for Motor Rehabilitation: A Review Geared
Toward a Research Methodology. International journal of
medical informatics, 2019.

[8] Valentina, M., et al., Virtual reality in rehabilitation and
therapy. Acta Clinica Croatica, 2013. 52(4.): p. 453-457.

[9] Feldman, B., E.M. Martin, and T. Skotnes, Big data in
healthcare hype and hope. Dr. Bonnie, 2012. 360: p. 122-
125.

[10] Dhayne, H., et al., In Search of Big Medical Data Integration
Solutions-A Comprehensive Survey. IEEE Access, 2019. 7:
p. 91265-91290.

[11] Raghupathi, W. and V. Raghupathi, Big data analytics in
healthcare: promise and potential. Health information
science and systems, 2014. 2(1): p. 3.

[12] Goli-Malekabadi, Z., M. Sargolzaei-Javan, and M.K.
Akbari, An effective model for store and retrieve big health
data in cloud computing. Computer methods and programs
in biomedicine, 2016. 132: p. 75-82.

[13] Abadi, D.J., et al. The design of the borealis stream
processing engine. in Cidr. 2005.

[14] Reddy, V.K., B.T. Rao, and L. Reddy, Research issues in
cloud computing. Global Journal of Computer Science and
Technology, 2011.

[15] Khalifa, A., Tele-Rehabilitation Games on the Cloud: A
Survey and a Vision. American Journal of Computer Science
and Engineering Survey (AJCSES), 2015. 3(2): p. 143-51.

[16] Cai, H., et al., IoT-based big data storage systems in cloud
computing: perspectives and challenges. IEEE Internet of
Things Journal, 2016. 4(1): p. 75-87.

[17] Mansouri, Y., A.N. Toosi, and R. Buyya, Cost optimization
for dynamic replication and migration of data in cloud data
centers. IEEE Transactions on Cloud Computing, 2017.

[18] Zhang, Q., et al., CHARM: A cost-efficient multi-cloud data
hosting scheme with high availability. IEEE Transactions on
Cloud computing, 2015. 3(3): p. 372-386.

[19] Ndikumana, A., et al., Joint communication, computation,
caching, and control in big data multi-access edge
computing. IEEE Transactions on Mobile Computing, 2019.

[20] Gilheany, S., Ram is 100 thousand times faster than disk for
database access. Directions Magazine, 2003.

[21] Park, G.H., Memory system including a nonvolatile memory
and a volatile memory, and processing method using the
memory system. 2019, Google Patents.

[22] Chen, C.-H., et al., Data Prefetching and Eviction
Mechanisms of Cache memory Storage Systems Based on
Scheduling for Big Data Processing. IEEE Transactions on
Parallel and Distributed Systems, 2019.

[23] Agombar, J.P., et al., Optimizing the management of cache
memory. 2018, Google Patents.

[24] Fricker, C., P. Robert, and J. Roberts. A versatile and
accurate approximation for LRU cache performance. in 2012

24th International Teletraffic Congress (ITC 24). 2012.
IEEE.

[25] Shariff, A.A.M., N. Katuk, and N.H. Zakaria, An overview
to pre-fetching techniques for content caching of mobile
applications. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC),

[26] Gilman, G.R., et al. Challenges and Opportunities of DNN
Model Execution Caching. in Proceedings of the Workshop
on Distributed Infrastructures for Deep Learning. 2019.

[27] Shim, J., P. Scheuermann, and R. Vingralek, Proxy cache
algorithms: Design, implementation, and performance. IEEE
Transactions on Knowledge and Data Engineering, 1999.
11(4): p. 549-562.

[28] O'neil, E.J., P.E. O'neil, and G. Weikum, The LRU-K page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 1993. 22(2): p. 297-306.

[29] Wilson, J.D., et al., Can shoulder range of movement be
measured accurately using the Microsoft Kinect sensor plus
Medical Interactive Recovery Assistant (MIRA) software?
Journal of shoulder and elbow surgery, 2017. 26(12): p.
e382-e389.

[30] Moldovan, I., et al. Development of a new scoring system
for bilateral upper limb function and performance in children
with cerebral palsy using the MIRA interactive video games
and the Kinect sensor. in Proceedings of the International
Conference on Disability, Virtual Reality and Associated
Technologies. 2014.

[31] Moldovan, I., et al. Virtual rehabilitation programme using
the MIRA platform, Kinect and Leap Motion sensors in an
81 years old patient with ischemic stroke. in 2017 E-Health
and Bioengineering Conference (EHB). 2017. IEEE.

[32] Osgouei, R.H., D. Soulsbv, and F. Bello. An Objective
Evaluation Method for Rehabilitation Exergames. in 2018
IEEE Games, Entertainment, Media Conference (GEM).
2018. IEEE.

[33] Yu, X. and S. Xiong, A Dynamic Time Warping Based
Algorithm to Evaluate Kinect-Enabled Home-Based
Physical Rehabilitation Exercises for Older People. Sensors,
2019. 19(13): p. 2882.

[34] Călin, A., et al., MIRA-UPPER LIMB REHABILITATION
SYSTEM USING MICROSOFT KINECT. Studia
Universitatis Babes-Bolyai, Informatica, 2011. 56(4).

[35] Azure services platform. 2009 2009-01-23]; Available from:
http://www.microsoft.com/azure.

[36] Zukowski, M., et al., MonetDB/X100-A DBMS In The CPU
Cache. IEEE Data Eng. Bull., 2005. 28(2): p. 17-22.

[37] Zheludkov, M. and T. Isachenko, High Performance cache
memory computing with Apache Ignite. 2017: Lulu. com.

[38] Acharya, S., Apache Ignite Quick Start Guide: Distributed
data caching and processing made easy. 2018: Packt
Publishing Ltd.

[39] Zhao, T., et al., Cloud-based medical image processing
system with anonymous data upload and download. 2013,
Google Patents.

[40] Joshi, P.S., Smoothing algorithm for round trip time (RTT)
measurements. 2008, Google Patents.

[41] Albeshri, A., C. Boyd, and J.G. Nieto. Geoproof: proofs of
geographic loc

[42] ation for cloud computing environment. in 2012 32nd
International Conference on Distributed Computing Systems
Workshops. 2012. IEEE.

[43] Qiu, M., et al., Energy-aware data allocation with hybrid
memory for mobile cloud systems. IEEE Systems Journal,
2014. 11(2): p. 813-822.

[44] Pavlo, A. and M. Aslett, What's really new with NewSQL?
ACM Sigmod Record, 2016. 45(2): p. 45-55.

[45] Chughtai, M., et al., The role of virtual rehabilitation in total
and unicompartmental knee arthroplasty. The journal of knee
surgery, 2019. 32(01): p. 105-110.

[46] Bozic, K.J., et al., Bundled payments in total joint
arthroplasty: targeting opportunities for quality
improvement and cost reduction. Clinical Orthopaedics and
Related Research®, 2014. 472(1): p. 188-193.

VII. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

An Optimal Data Access Framework for Telerehabilitation System

35ISSN: 2672-7188 Vol. 3 No. 1 May 2021

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 37

[1] Patel, S. and A. Patel, Abig data revolution in health care
sector: Opportunities, challenges and technological
advancements. International Journal of Information, 2016.
6(1/2): p. 155-162.

[2] Vogt, S., et al., Virtual reality interventions for balance
prevention and rehabilitation after musculoskeletal lower
limb impairments in young up to middle-aged adults: A
comprehensive review on used technology, balance outcome
measures and observed effects. International journal of
medical informatics, 2019.

[3] Ismail, W., et al. A Conceptual Model of Hybrid Monitoring
Rehabilitation Progress of Stroke Patients: A Case Study of
a Public Tertiary Hospital in Malaysia. in 2019 IEEE 6th
International Conference on Industrial Engineering and
Applications (ICIEA). 2019. IEEE.

[4] Maggio, M.G., et al., The Growing Use of Virtual Reality in
Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping
Review. Journal of the National Medical Association, 2019.

[5] Mehta, D., et al., Digitalization in Health Care Sector: A HR
Analytics Perspective.

[6] Deng, Y., Gao, F., & Chen, H. Angle Estimation for Knee
Joint Movement Based on PCA-RELM Algorithm.
Symmetry, 2020, 12(1), p. 130.

[7] Ayed, I., et al., Vision-Based Serious Games and Virtual
Reality Systems for Motor Rehabilitation: A Review Geared
Toward a Research Methodology. International journal of
medical informatics, 2019.

[8] Valentina, M., et al., Virtual reality in rehabilitation and
therapy. Acta Clinica Croatica, 2013. 52(4.): p. 453-457.

[9] Feldman, B., E.M. Martin, and T. Skotnes, Big data in
healthcare hype and hope. Dr. Bonnie, 2012. 360: p. 122-
125.

[10] Dhayne, H., et al., In Search of Big Medical Data Integration
Solutions-A Comprehensive Survey. IEEE Access, 2019. 7:
p. 91265-91290.

[11] Raghupathi, W. and V. Raghupathi, Big data analytics in
healthcare: promise and potential. Health information
science and systems, 2014. 2(1): p. 3.

[12] Goli-Malekabadi, Z., M. Sargolzaei-Javan, and M.K.
Akbari, An effective model for store and retrieve big health
data in cloud computing. Computer methods and programs
in biomedicine, 2016. 132: p. 75-82.

[13] Abadi, D.J., et al. The design of the borealis stream
processing engine. in Cidr. 2005.

[14] Reddy, V.K., B.T. Rao, and L. Reddy, Research issues in
cloud computing. Global Journal of Computer Science and
Technology, 2011.

[15] Khalifa, A., Tele-Rehabilitation Games on the Cloud: A
Survey and a Vision. American Journal of Computer Science
and Engineering Survey (AJCSES), 2015. 3(2): p. 143-51.

[16] Cai, H., et al., IoT-based big data storage systems in cloud
computing: perspectives and challenges. IEEE Internet of
Things Journal, 2016. 4(1): p. 75-87.

[17] Mansouri, Y., A.N. Toosi, and R. Buyya, Cost optimization
for dynamic replication and migration of data in cloud data
centers. IEEE Transactions on Cloud Computing, 2017.

[18] Zhang, Q., et al., CHARM: A cost-efficient multi-cloud data
hosting scheme with high availability. IEEE Transactions on
Cloud computing, 2015. 3(3): p. 372-386.

[19] Ndikumana, A., et al., Joint communication, computation,
caching, and control in big data multi-access edge
computing. IEEE Transactions on Mobile Computing, 2019.

[20] Gilheany, S., Ram is 100 thousand times faster than disk for
database access. Directions Magazine, 2003.

[21] Park, G.H., Memory system including a nonvolatile memory
and a volatile memory, and processing method using the
memory system. 2019, Google Patents.

[22] Chen, C.-H., et al., Data Prefetching and Eviction
Mechanisms of Cache memory Storage Systems Based on
Scheduling for Big Data Processing. IEEE Transactions on
Parallel and Distributed Systems, 2019.

[23] Agombar, J.P., et al., Optimizing the management of cache
memory. 2018, Google Patents.

[24] Fricker, C., P. Robert, and J. Roberts. A versatile and
accurate approximation for LRU cache performance. in 2012

24th International Teletraffic Congress (ITC 24). 2012.
IEEE.

[25] Shariff, A.A.M., N. Katuk, and N.H. Zakaria, An overview
to pre-fetching techniques for content caching of mobile
applications. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC),

[26] Gilman, G.R., et al. Challenges and Opportunities of DNN
Model Execution Caching. in Proceedings of the Workshop
on Distributed Infrastructures for Deep Learning. 2019.

[27] Shim, J., P. Scheuermann, and R. Vingralek, Proxy cache
algorithms: Design, implementation, and performance. IEEE
Transactions on Knowledge and Data Engineering, 1999.
11(4): p. 549-562.

[28] O'neil, E.J., P.E. O'neil, and G. Weikum, The LRU-K page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 1993. 22(2): p. 297-306.

[29] Wilson, J.D., et al., Can shoulder range of movement be
measured accurately using the Microsoft Kinect sensor plus
Medical Interactive Recovery Assistant (MIRA) software?
Journal of shoulder and elbow surgery, 2017. 26(12): p.
e382-e389.

[30] Moldovan, I., et al. Development of a new scoring system
for bilateral upper limb function and performance in children
with cerebral palsy using the MIRA interactive video games
and the Kinect sensor. in Proceedings of the International
Conference on Disability, Virtual Reality and Associated
Technologies. 2014.

[31] Moldovan, I., et al. Virtual rehabilitation programme using
the MIRA platform, Kinect and Leap Motion sensors in an
81 years old patient with ischemic stroke. in 2017 E-Health
and Bioengineering Conference (EHB). 2017. IEEE.

[32] Osgouei, R.H., D. Soulsbv, and F. Bello. An Objective
Evaluation Method for Rehabilitation Exergames. in 2018
IEEE Games, Entertainment, Media Conference (GEM).
2018. IEEE.

[33] Yu, X. and S. Xiong, A Dynamic Time Warping Based
Algorithm to Evaluate Kinect-Enabled Home-Based
Physical Rehabilitation Exercises for Older People. Sensors,
2019. 19(13): p. 2882.

[34] Călin, A., et al., MIRA-UPPER LIMB REHABILITATION
SYSTEM USING MICROSOFT KINECT. Studia
Universitatis Babes-Bolyai, Informatica, 2011. 56(4).

[35] Azure services platform. 2009 2009-01-23]; Available from:
http://www.microsoft.com/azure.

[36] Zukowski, M., et al., MonetDB/X100-A DBMS In The CPU
Cache. IEEE Data Eng. Bull., 2005. 28(2): p. 17-22.

[37] Zheludkov, M. and T. Isachenko, High Performance cache
memory computing with Apache Ignite. 2017: Lulu. com.

[38] Acharya, S., Apache Ignite Quick Start Guide: Distributed
data caching and processing made easy. 2018: Packt
Publishing Ltd.

[39] Zhao, T., et al., Cloud-based medical image processing
system with anonymous data upload and download. 2013,
Google Patents.

[40] Joshi, P.S., Smoothing algorithm for round trip time (RTT)
measurements. 2008, Google Patents.

[41] Albeshri, A., C. Boyd, and J.G. Nieto. Geoproof: proofs of
geographic loc

[42] ation for cloud computing environment. in 2012 32nd
International Conference on Distributed Computing Systems
Workshops. 2012. IEEE.

[43] Qiu, M., et al., Energy-aware data allocation with hybrid
memory for mobile cloud systems. IEEE Systems Journal,
2014. 11(2): p. 813-822.

[44] Pavlo, A. and M. Aslett, What's really new with NewSQL?
ACM Sigmod Record, 2016. 45(2): p. 45-55.

[45] Chughtai, M., et al., The role of virtual rehabilitation in total
and unicompartmental knee arthroplasty. The journal of knee
surgery, 2019. 32(01): p. 105-110.

[46] Bozic, K.J., et al., Bundled payments in total joint
arthroplasty: targeting opportunities for quality
improvement and cost reduction. Clinical Orthopaedics and
Related Research®, 2014. 472(1): p. 188-193.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 37

[1] Patel, S. and A. Patel, Abig data revolution in health care
sector: Opportunities, challenges and technological
advancements. International Journal of Information, 2016.
6(1/2): p. 155-162.

[2] Vogt, S., et al., Virtual reality interventions for balance
prevention and rehabilitation after musculoskeletal lower
limb impairments in young up to middle-aged adults: A
comprehensive review on used technology, balance outcome
measures and observed effects. International journal of
medical informatics, 2019.

[3] Ismail, W., et al. A Conceptual Model of Hybrid Monitoring
Rehabilitation Progress of Stroke Patients: A Case Study of
a Public Tertiary Hospital in Malaysia. in 2019 IEEE 6th
International Conference on Industrial Engineering and
Applications (ICIEA). 2019. IEEE.

[4] Maggio, M.G., et al., The Growing Use of Virtual Reality in
Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping
Review. Journal of the National Medical Association, 2019.

[5] Mehta, D., et al., Digitalization in Health Care Sector: A HR
Analytics Perspective.

[6] Deng, Y., Gao, F., & Chen, H. Angle Estimation for Knee
Joint Movement Based on PCA-RELM Algorithm.
Symmetry, 2020, 12(1), p. 130.

[7] Ayed, I., et al., Vision-Based Serious Games and Virtual
Reality Systems for Motor Rehabilitation: A Review Geared
Toward a Research Methodology. International journal of
medical informatics, 2019.

[8] Valentina, M., et al., Virtual reality in rehabilitation and
therapy. Acta Clinica Croatica, 2013. 52(4.): p. 453-457.

[9] Feldman, B., E.M. Martin, and T. Skotnes, Big data in
healthcare hype and hope. Dr. Bonnie, 2012. 360: p. 122-
125.

[10] Dhayne, H., et al., In Search of Big Medical Data Integration
Solutions-A Comprehensive Survey. IEEE Access, 2019. 7:
p. 91265-91290.

[11] Raghupathi, W. and V. Raghupathi, Big data analytics in
healthcare: promise and potential. Health information
science and systems, 2014. 2(1): p. 3.

[12] Goli-Malekabadi, Z., M. Sargolzaei-Javan, and M.K.
Akbari, An effective model for store and retrieve big health
data in cloud computing. Computer methods and programs
in biomedicine, 2016. 132: p. 75-82.

[13] Abadi, D.J., et al. The design of the borealis stream
processing engine. in Cidr. 2005.

[14] Reddy, V.K., B.T. Rao, and L. Reddy, Research issues in
cloud computing. Global Journal of Computer Science and
Technology, 2011.

[15] Khalifa, A., Tele-Rehabilitation Games on the Cloud: A
Survey and a Vision. American Journal of Computer Science
and Engineering Survey (AJCSES), 2015. 3(2): p. 143-51.

[16] Cai, H., et al., IoT-based big data storage systems in cloud
computing: perspectives and challenges. IEEE Internet of
Things Journal, 2016. 4(1): p. 75-87.

[17] Mansouri, Y., A.N. Toosi, and R. Buyya, Cost optimization
for dynamic replication and migration of data in cloud data
centers. IEEE Transactions on Cloud Computing, 2017.

[18] Zhang, Q., et al., CHARM: A cost-efficient multi-cloud data
hosting scheme with high availability. IEEE Transactions on
Cloud computing, 2015. 3(3): p. 372-386.

[19] Ndikumana, A., et al., Joint communication, computation,
caching, and control in big data multi-access edge
computing. IEEE Transactions on Mobile Computing, 2019.

[20] Gilheany, S., Ram is 100 thousand times faster than disk for
database access. Directions Magazine, 2003.

[21] Park, G.H., Memory system including a nonvolatile memory
and a volatile memory, and processing method using the
memory system. 2019, Google Patents.

[22] Chen, C.-H., et al., Data Prefetching and Eviction
Mechanisms of Cache memory Storage Systems Based on
Scheduling for Big Data Processing. IEEE Transactions on
Parallel and Distributed Systems, 2019.

[23] Agombar, J.P., et al., Optimizing the management of cache
memory. 2018, Google Patents.

[24] Fricker, C., P. Robert, and J. Roberts. A versatile and
accurate approximation for LRU cache performance. in 2012

24th International Teletraffic Congress (ITC 24). 2012.
IEEE.

[25] Shariff, A.A.M., N. Katuk, and N.H. Zakaria, An overview
to pre-fetching techniques for content caching of mobile
applications. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC),

[26] Gilman, G.R., et al. Challenges and Opportunities of DNN
Model Execution Caching. in Proceedings of the Workshop
on Distributed Infrastructures for Deep Learning. 2019.

[27] Shim, J., P. Scheuermann, and R. Vingralek, Proxy cache
algorithms: Design, implementation, and performance. IEEE
Transactions on Knowledge and Data Engineering, 1999.
11(4): p. 549-562.

[28] O'neil, E.J., P.E. O'neil, and G. Weikum, The LRU-K page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 1993. 22(2): p. 297-306.

[29] Wilson, J.D., et al., Can shoulder range of movement be
measured accurately using the Microsoft Kinect sensor plus
Medical Interactive Recovery Assistant (MIRA) software?
Journal of shoulder and elbow surgery, 2017. 26(12): p.
e382-e389.

[30] Moldovan, I., et al. Development of a new scoring system
for bilateral upper limb function and performance in children
with cerebral palsy using the MIRA interactive video games
and the Kinect sensor. in Proceedings of the International
Conference on Disability, Virtual Reality and Associated
Technologies. 2014.

[31] Moldovan, I., et al. Virtual rehabilitation programme using
the MIRA platform, Kinect and Leap Motion sensors in an
81 years old patient with ischemic stroke. in 2017 E-Health
and Bioengineering Conference (EHB). 2017. IEEE.

[32] Osgouei, R.H., D. Soulsbv, and F. Bello. An Objective
Evaluation Method for Rehabilitation Exergames. in 2018
IEEE Games, Entertainment, Media Conference (GEM).
2018. IEEE.

[33] Yu, X. and S. Xiong, A Dynamic Time Warping Based
Algorithm to Evaluate Kinect-Enabled Home-Based
Physical Rehabilitation Exercises for Older People. Sensors,
2019. 19(13): p. 2882.

[34] Călin, A., et al., MIRA-UPPER LIMB REHABILITATION
SYSTEM USING MICROSOFT KINECT. Studia
Universitatis Babes-Bolyai, Informatica, 2011. 56(4).

[35] Azure services platform. 2009 2009-01-23]; Available from:
http://www.microsoft.com/azure.

[36] Zukowski, M., et al., MonetDB/X100-A DBMS In The CPU
Cache. IEEE Data Eng. Bull., 2005. 28(2): p. 17-22.

[37] Zheludkov, M. and T. Isachenko, High Performance cache
memory computing with Apache Ignite. 2017: Lulu. com.

[38] Acharya, S., Apache Ignite Quick Start Guide: Distributed
data caching and processing made easy. 2018: Packt
Publishing Ltd.

[39] Zhao, T., et al., Cloud-based medical image processing
system with anonymous data upload and download. 2013,
Google Patents.

[40] Joshi, P.S., Smoothing algorithm for round trip time (RTT)
measurements. 2008, Google Patents.

[41] Albeshri, A., C. Boyd, and J.G. Nieto. Geoproof: proofs of
geographic loc

[42] ation for cloud computing environment. in 2012 32nd
International Conference on Distributed Computing Systems
Workshops. 2012. IEEE.

[43] Qiu, M., et al., Energy-aware data allocation with hybrid
memory for mobile cloud systems. IEEE Systems Journal,
2014. 11(2): p. 813-822.

[44] Pavlo, A. and M. Aslett, What's really new with NewSQL?
ACM Sigmod Record, 2016. 45(2): p. 45-55.

[45] Chughtai, M., et al., The role of virtual rehabilitation in total
and unicompartmental knee arthroplasty. The journal of knee
surgery, 2019. 32(01): p. 105-110.

[46] Bozic, K.J., et al., Bundled payments in total joint
arthroplasty: targeting opportunities for quality
improvement and cost reduction. Clinical Orthopaedics and
Related Research®, 2014. 472(1): p. 188-193.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 38

[47] Ong, K.L., et al., Prevalence and costs of rehabilitation and
physical therapy after primary TJA. The Journal of
arthroplasty, 2015. 30(7): p. 1121-1126.

[48] Fu, M.C., et al., Discharge to inpatient facilities after total
hip arthroplasty is associated with increased postdischarge
morbidity. The Journal of arthroplasty, 2017. 32(9): p. S144-
S149. e1.

[49] Cantea, A., et al. Mira. in Proceedings of the 31st
International BCS Human Computer Interaction Conference
(HCI 2017) 31. 2017.

[50] El Fezazi, M., et al. Knee Functional Telerehabilitation
System for Inclusive Smart Cities Based on Assistive IoT
Technologies. in The Proceedings of the Third International
Conference on Smart City Applications. 2019. Springer.

[51] DeBrabant, J., et al., Anti-caching: A new approach to
database management system architecture. Proceedings of
the VLDB Endowment, 2013. 6(14): p. 1942-1953.

[52] Jena, S.R. and Z. Ahmad, Response time minimization of
different load balancing algorithms in cloud computing
environment. International Journal of Computer
Applications, 2013. 69(17): p. 22-27.

[53] Li, H.-J. and A.-G. Song (2017). "Architectural design of a
cloud robotic system for upper-limb rehabilitation with

multimodal interaction." Journal of Computer Science and
Technology 32(2): 258-268.

[54] J. Li, S. Zhou and H. Yu, "TAS: A Rehabilitation Training
and Administration System Designed for Upper Limb
Rehabilitation Robot," 2019 5th International Conference on
Control, Automation and Robotics (ICCAR), Beijing, China,
2019, pp. 63-67.

[55] Karime, A., M. Eid, H. Dong, M. Halimi, W. Gueaieb and
A. El Saddik (2014). "CAHR: A contextually adaptive
home-based rehabilitation framework." IEEE Transactions
on Instrumentation and Measurement 64(2): 427-438.

[56] Kato, N., T. Tanaka, S. Sugihara, K. Shimizu and N. Kudo
(2016). Trial operation of a cloud service-based three-
dimensional virtual reality tele-rehabilitation system for
stroke patients. 2016 11th International Conference on
Computer Science & Education (ICCSE), IEEE.

[57] Chen, Y. (2015). Real-time point cloud data transmission in
Kinect point cloud data based telerehabilitation system.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 3, NO. 1, PP. 26-38, MAY 2021 38

[47] Ong, K.L., et al., Prevalence and costs of rehabilitation and
physical therapy after primary TJA. The Journal of
arthroplasty, 2015. 30(7): p. 1121-1126.

[48] Fu, M.C., et al., Discharge to inpatient facilities after total
hip arthroplasty is associated with increased postdischarge
morbidity. The Journal of arthroplasty, 2017. 32(9): p. S144-
S149. e1.

[49] Cantea, A., et al. Mira. in Proceedings of the 31st
International BCS Human Computer Interaction Conference
(HCI 2017) 31. 2017.

[50] El Fezazi, M., et al. Knee Functional Telerehabilitation
System for Inclusive Smart Cities Based on Assistive IoT
Technologies. in The Proceedings of the Third International
Conference on Smart City Applications. 2019. Springer.

[51] DeBrabant, J., et al., Anti-caching: A new approach to
database management system architecture. Proceedings of
the VLDB Endowment, 2013. 6(14): p. 1942-1953.

[52] Jena, S.R. and Z. Ahmad, Response time minimization of
different load balancing algorithms in cloud computing
environment. International Journal of Computer
Applications, 2013. 69(17): p. 22-27.

[53] Li, H.-J. and A.-G. Song (2017). "Architectural design of a
cloud robotic system for upper-limb rehabilitation with

multimodal interaction." Journal of Computer Science and
Technology 32(2): 258-268.

[54] J. Li, S. Zhou and H. Yu, "TAS: A Rehabilitation Training
and Administration System Designed for Upper Limb
Rehabilitation Robot," 2019 5th International Conference on
Control, Automation and Robotics (ICCAR), Beijing, China,
2019, pp. 63-67.

[55] Karime, A., M. Eid, H. Dong, M. Halimi, W. Gueaieb and
A. El Saddik (2014). "CAHR: A contextually adaptive
home-based rehabilitation framework." IEEE Transactions
on Instrumentation and Measurement 64(2): 427-438.

[56] Kato, N., T. Tanaka, S. Sugihara, K. Shimizu and N. Kudo
(2016). Trial operation of a cloud service-based three-
dimensional virtual reality tele-rehabilitation system for
stroke patients. 2016 11th International Conference on
Computer Science & Education (ICCSE), IEEE.

[57] Chen, Y. (2015). Real-time point cloud data transmission in
Kinect point cloud data based telerehabilitation system.

	00_V0301MTOC
	01_V0301M(01-08)
	02_V0301M(09-16)
	03_V0301M(17-24)
	04_V0301M(25-36)
	05_V0301M(37-42)

