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Abstract—All countries are fighting the battle against substance 
addiction, most especially amphetamine-type stimulants (ATS). The 
ATS molecular structure profoundly dictates their identification 
process. However, due to the advent of new, sophisticated, and 
increasingly complex ATS molecular structures, the method is 
becoming more unreliable. The distinctive features of the molecular 
structure of the ATS need, therefore, to be precisely obtained. This 
paper formulates a novel 3D Chebyshev–Fourier molecular descriptor 
to represent the drug’s molecular structure. The benchmarking of the 
proposed technique is using drug chemical structures obtained from 
the pihkal.info database for the ATS. Non-ATS drugs, by comparison, 
are arbitrarily selected from the ChemSpider database. The assessment 
indicates that the technique is qualified to be further explored and 
modified to be entirely consistent with the ATS detection domain in 
future works. 

 
Index Terms—3D moments; ATS; Chebyshev–Fourier moments; 
molecular similarity; molecular descriptors. 

I. INTRODUCTION 

HE destructive potential of amphetamine-type stimulants 
(ATS) substance addiction is continually threatening every 
nation in this country. One of the critical reasons for the 

abuse of ATS is that a chemist may derive a novel and 
uncontrolled structure of ATS and produce it in clandestine 
laboratories, because it is mainly synthetic, provided with 
adequate technical knowledge [1, 2]. For law enforcement 
authorities, these creative designs proved to be a challenge, 
often leading to both false positive and negative outcomes, and 
often wrongly outlining the result of the criminal justice system 
[3-5]. 

Despite the noticeable need for effective methods for the 
detection and identification of ATS in the field of forensic 
toxicology, computer-assisted methods have only recently 
started to be used [6-8]. In the field of chemistry, the use of 
computer science breeds a new area, namely cheminformatics. 
In order to locate structurally related compounds, 
cheminformatics researchers use molecular similarity search [9, 
10]. The effectiveness of the search for molecular similarity 

depends on the representation of molecular structures 
employed, also known as molecular descriptors [11, 12]. 

Formal molecular shapes and surface representations provide 
more detailed and chemically applicable details than simplistic 
molecular graphs and stereochemical bonding structures. It also 
offers a more detailed definition of the actual molecular 
recognition and interaction processes that result in a 
quantitative shape-activity relations (QShAR) domain [13]. 
The shape is an essential visual attribute and is one of the 
fundamental characteristics used to define the content of the 
image [14]. Therefore, searching for an image using the shape 
features poses many research challenges, because extracting the 
features that reflect and describe the shape is an arduous task 
[15] that also holds in the QShAR domain [13]. 

There are several types of molecular descriptors; the most 
widely used are 2D or topological molecular descriptors and 3D 
or geometric molecular descriptors. Geometric descriptors 
typically have more detail and discrimination power for related 
molecular structures and molecular configurations than for 
topological descriptors [16-18]. This study assumes that 
molecular similarity can also be used to detect similarity 
between unknown and reference compounds and can therefore 
be used to detect new brands of ATS based on known instances 
of ATS molecular structure [6, 7] drugs, due to the presence of 
aromatic phenyl ring and carbonyl side chains which gives its 
unique characteristics in all ATS analogues [1]. 

Recent developments in science have allowed the 
characterization of the physical molecular structure through 
molecular microscopy, such as the use of transmission electron 
microscopy (TEM), scanning tunneling microscopy (STM) and 
more recently, the non-contact atomic force microscope (nc-
AFM) [19]. Single-molecule images obtained with nc-AFM are 
reminiscent of wire-frame chemical structures and also allow 
for the detection of variations in chemical bond-order [20]. The 
high-resolution images obtained indicate that the 3D model 
used for decades to represent the molecular structure is nearly 
identical to the physical molecules. 
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Invariance to the labelling, molecular atoms numbering, and 
molecular translation and rotation is the necessary property of 
the molecular descriptor. Besides, it must also have a simple, 
algorithmically quantifiable description, and the values must be 
within the appropriate numerical range for the molecule set 
where applicable [21, 22]. Since the molecular descriptor is 
independent of the characteristics of the molecular 
representation, it is possible to consider the molecular form as 
an image and thus to apply the image processing to depict the 
shape of the molecular structure. 

Various molecular structure shape representation techniques 
have been proposed in the QShAR domain itself [13, 23]. In the 
meantime, several shape representations techniques have been 
explored in the pattern recognition and image processing 
domain to extract features from the object shapes. A good shape 
descriptor should be able to find physically similar forms, 
similar to human beings when comparing object shapes. One of 
the applications of 2D and 3D image processing methods is 
moment invariants (MI) which can easily achieve these 
invariance properties. MI is a special case of moments (the 
scalar quantity used to describe a function and to capture its key 
features) [24]. The first use of MI as a 3D molecular descriptor 
is the 3D Zernike descriptor, although it was implemented to 
represent the molecular surface of the protein structure [25]. 

There are some benefits to MI-based molecular form 
representation compared to traditional representations. First, 
MI-based descriptors enable easy retrieval and comparison of 
molecular structures. Second, due to its invariance properties, 
molecular structures do not need to be aligned for comparison. 
Finally, the resolution of the interpretation of the molecular 
structures can be conveniently and naturally modified by 
adjusting the order of the shape descriptors [25, 26]. 

However, it is very difficult to derive MI from a moment of 
technique, as it must follow the invariance requirements where 
the representation of an object must be invariant while the 
object is undergoing translation, size, and rotation 
transformation [27]. The goal of this study is, therefore, only to 
suggest a 3D moment-based molecular representation 
technique instead of an MI-based one, due to the advantages of 
3D molecular shape and its similarity to physical molecular 
structure. In contrast, the implementation of the MI-based 
molecular representation technique will be carried out 
extensively in future works, and this research will be used as 
the basis of the MI-based technique if the findings of this study 
are satisfactory. 

Before the proposed technique is defined and the rationale of 
the findings obtained is provided, the current moment-based 
techniques, which will also be used as a comparison of the 
proposed technique, must be discussed first. Thus, the rest of 
this paper is structured as follows. The proposed technique is 
introduced, and the experimental setup explaining the data 
source collection and experimental design is described in 
Sections 2 and 3, respectively. Meanwhile, Sections 4 and 5 
discusses the findings, hypotheses, and future works, 
respectively. 

II. PROPOSED 3D CHEBYSHEV–FOURIER MOMENTS 

Moments are used to create a series of numbers that uniquely 
describe the global characteristics of an image and have been 

used in a variety of fields, from mechanics and statistics to 
pattern recognition and image analysis [28]. References [29] 
and [30] were pioneering the use of moments to quantify image 
features in image processing and pattern recognition. 

A 2D image is regarded as piece-wise continuous real 
function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) of two variables defined on a compact support 
𝐷𝐷 ⊂ 𝑅𝑅 × 𝑅𝑅  and having a finite nonzero integral, which by 
extension is also applicable to 3D images. Some of the existing 
and well-known moments, including orthogonal moments, are 
geometric [29], complex (proposed by [31] and later extended 
by [32]), Legendre, and Zernike moments, both are proposed 
by [33]. 

On the other hand, the Chebyshev–Fourier moments was first 
introduced by [34], which was motivated by the findings of 
[35], which have shown that a polynomial that is invariant for 
any rotation of axes about the origin must be of the form 

𝑉𝑉(𝑟𝑟 cos𝜑𝜑 , 𝑟𝑟 sin𝜑𝜑) = 𝑅𝑅𝑠𝑠(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (1) 

where 𝑅𝑅𝑠𝑠(𝑟𝑟) is a radial polynomial in 𝑟𝑟 = √𝑥𝑥2 + 𝑦𝑦2 of degree 
𝑠𝑠 and 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞 is an angular part of the respective polynomial with 
𝑖𝑖̂ = √−1 and 𝜑𝜑 = arctan (𝑦𝑦𝑥𝑥). The area of orthogonality is a 
unit disk Ω = {(𝑥𝑥, 𝑦𝑦)|𝑥𝑥2 + 𝑦𝑦2 ≤ 1}. To calculate the moments, 
the image 𝑓𝑓(𝑥𝑥, 𝑦𝑦) must be scaled such that it is fully contained 
in Ω  [36]. If the Chebyshev radial polynomial is used to 
construct an orthogonal function system to decompose an 
image, the orthogonal function system will be the invariant 
features of the picture. 

The definition of the shifted Chebyshev polynomial of the 
second kind is 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1), (2) 

where the function 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1) is the Chebyshev polynomial of 
the second kind defined as 

𝑈𝑈𝑠𝑠(cos𝜑𝜑) = sin(𝑠𝑠 + 1)𝜑𝜑
sin𝜑𝜑 , (3) 

with 

sin(𝑠𝑠 + 1)𝜑𝜑 = sin𝜑𝜑 [(2 cos𝜑𝜑)𝑠𝑠

− (𝑠𝑠 − 1
1 ) (2 cos𝜑𝜑)𝑠𝑠−2

+ (𝑠𝑠 − 2
2 ) (2 cos𝜑𝜑)𝑠𝑠−4 − ⋯ ]. 

(4) 

Let cos𝜑𝜑 = 2𝑟𝑟 − 1, then 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(cos𝜑𝜑) 

= ∑(−1)𝑘𝑘
(𝑠𝑠 − 𝑘𝑘)!

𝑘𝑘! (𝑠𝑠 − 2𝑘𝑘)! [2(2𝑟𝑟 − 1)]𝑠𝑠−2𝑘𝑘
𝑠𝑠+2
2

𝑘𝑘=0
. 

(5) 

The shifted Chebyshev polynomial of the second kind with 
the weighting function is orthogonal in the interval [0,1] as 

𝑤𝑤(𝑟𝑟) = √𝑟𝑟 − 𝑟𝑟2, (6) 

which satisfy the following orthogonality property to the weight 
function 
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introduced, and the experimental setup explaining the data 
source collection and experimental design is described in 
Sections 2 and 3, respectively. Meanwhile, Sections 4 and 5 
discusses the findings, hypotheses, and future works, 
respectively. 

II. PROPOSED 3D CHEBYSHEV–FOURIER MOMENTS 

Moments are used to create a series of numbers that uniquely 
describe the global characteristics of an image and have been 

used in a variety of fields, from mechanics and statistics to 
pattern recognition and image analysis [28]. References [29] 
and [30] were pioneering the use of moments to quantify image 
features in image processing and pattern recognition. 

A 2D image is regarded as piece-wise continuous real 
function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) of two variables defined on a compact support 
𝐷𝐷 ⊂ 𝑅𝑅 × 𝑅𝑅  and having a finite nonzero integral, which by 
extension is also applicable to 3D images. Some of the existing 
and well-known moments, including orthogonal moments, are 
geometric [29], complex (proposed by [31] and later extended 
by [32]), Legendre, and Zernike moments, both are proposed 
by [33]. 

On the other hand, the Chebyshev–Fourier moments was first 
introduced by [34], which was motivated by the findings of 
[35], which have shown that a polynomial that is invariant for 
any rotation of axes about the origin must be of the form 

𝑉𝑉(𝑟𝑟 cos𝜑𝜑 , 𝑟𝑟 sin𝜑𝜑) = 𝑅𝑅𝑠𝑠(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (1) 

where 𝑅𝑅𝑠𝑠(𝑟𝑟) is a radial polynomial in 𝑟𝑟 = √𝑥𝑥2 + 𝑦𝑦2 of degree 
𝑠𝑠 and 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞 is an angular part of the respective polynomial with 
𝑖𝑖̂ = √−1 and 𝜑𝜑 = arctan (𝑦𝑦𝑥𝑥). The area of orthogonality is a 
unit disk Ω = {(𝑥𝑥, 𝑦𝑦)|𝑥𝑥2 + 𝑦𝑦2 ≤ 1}. To calculate the moments, 
the image 𝑓𝑓(𝑥𝑥, 𝑦𝑦) must be scaled such that it is fully contained 
in Ω  [36]. If the Chebyshev radial polynomial is used to 
construct an orthogonal function system to decompose an 
image, the orthogonal function system will be the invariant 
features of the picture. 

The definition of the shifted Chebyshev polynomial of the 
second kind is 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1), (2) 

where the function 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1) is the Chebyshev polynomial of 
the second kind defined as 

𝑈𝑈𝑠𝑠(cos𝜑𝜑) = sin(𝑠𝑠 + 1)𝜑𝜑
sin𝜑𝜑 , (3) 

with 

sin(𝑠𝑠 + 1)𝜑𝜑 = sin𝜑𝜑 [(2 cos𝜑𝜑)𝑠𝑠

− (𝑠𝑠 − 1
1 ) (2 cos𝜑𝜑)𝑠𝑠−2

+ (𝑠𝑠 − 2
2 ) (2 cos𝜑𝜑)𝑠𝑠−4 − ⋯ ]. 

(4) 

Let cos𝜑𝜑 = 2𝑟𝑟 − 1, then 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(cos𝜑𝜑) 

= ∑(−1)𝑘𝑘
(𝑠𝑠 − 𝑘𝑘)!

𝑘𝑘! (𝑠𝑠 − 2𝑘𝑘)! [2(2𝑟𝑟 − 1)]𝑠𝑠−2𝑘𝑘
𝑠𝑠+2
2

𝑘𝑘=0
. 

(5) 

The shifted Chebyshev polynomial of the second kind with 
the weighting function is orthogonal in the interval [0,1] as 

𝑤𝑤(𝑟𝑟) = √𝑟𝑟 − 𝑟𝑟2, (6) 

which satisfy the following orthogonality property to the weight 
function 
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∫𝑈𝑈𝑝𝑝∗(𝑟𝑟)𝑈𝑈𝑞𝑞∗(𝑟𝑟)𝑤𝑤(𝑟𝑟) d𝑟𝑟
1

0

= 𝜋𝜋
8 𝛿𝛿𝑝𝑝𝑞𝑞 , (7) 

where 𝛿𝛿𝑝𝑝𝑞𝑞 is the Kronecker delta, 𝛿𝛿𝑝𝑝𝑞𝑞 = 1 if 𝑝𝑝 = 𝑞𝑞 and 𝛿𝛿𝑝𝑝𝑞𝑞 =
0 otherwise. 

From Equations (5) and (7), the radial polynomial is 

𝑅𝑅𝑠𝑠(𝑟𝑟) = √ 8
𝜋𝜋𝑟𝑟𝑤𝑤(𝑟𝑟)𝑈𝑈𝑠𝑠∗(𝑟𝑟) (8) 

then the orthogonality property becomes 

∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑅𝑅𝑞𝑞(𝑟𝑟)𝑟𝑟 d𝑟𝑟
1

0

= 𝛿𝛿𝑝𝑝𝑞𝑞 , (9) 

Thus, the Chebyshev–Fourier moments can be defined as 

Ψ𝑝𝑝𝑞𝑞 = ∫ ∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞𝑓𝑓(𝑟𝑟,𝜑𝜑)𝑟𝑟 d𝑟𝑟 d𝜑𝜑
1

0

2𝜋𝜋

0

. (10) 

This study proposes the extension of Chebyshev–Fourier 
moments for 3D images. The proposed 3D Chebyshev–Fourier 
moments is adopting the generalization of n-dimensional 
moments on a sphere [36, 37], and defined as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∫ ∫∫𝑅𝑅𝑠𝑠(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚 d𝜚𝜚 d𝜃𝜃 d𝜑𝜑
1

0

𝜋𝜋

0

2𝜋𝜋

0

, (11) 

where 𝑅𝑅𝑠𝑠(𝜚𝜚) is the radial polynomial given in Equation (8) with 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 , 𝜃𝜃 = arctan (𝑦𝑦𝑥𝑥) , and 𝜑𝜑 = arccos (𝑧𝑧𝜚𝜚) . 
The 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) is the spherical harmonics [38] defined as 

𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) = √2𝑙𝑙 + 1
4𝜋𝜋

(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!𝑃𝑃𝑛𝑛

𝑚𝑚(cos 𝜃𝜃) 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (12) 

where 𝑃𝑃𝑛𝑛𝑚𝑚 is an associated Legendre function defined as 

𝑃𝑃𝑛𝑛𝑚𝑚(𝑎𝑎) = (−1)𝑚𝑚(1 − 𝑎𝑎2)
𝑚𝑚
2 ( d

d𝑎𝑎)
𝑚𝑚
𝐿𝐿𝑛𝑛(𝑎𝑎), (13) 

and 𝐿𝐿𝑛𝑛(𝑎𝑎) is a Legendre polynomial defined as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝑐𝑐𝑘𝑘,𝑠𝑠𝑎𝑎𝑘𝑘
𝑠𝑠

𝑘𝑘=0
= (−1)𝑠𝑠

2𝑠𝑠𝑠𝑠! ( d
d𝑎𝑎)

𝑠𝑠
[(1 − 𝑎𝑎2)𝑠𝑠], (14) 

which can also be written as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝐷𝐷𝑠𝑠𝑘𝑘𝑎𝑎𝑠𝑠−2𝑘𝑘
⌊𝑠𝑠2⌋

𝑘𝑘=0
, (15) 

with 

𝐷𝐷𝑠𝑠𝑘𝑘 = (−1)𝑘𝑘
(2𝑠𝑠 − 2𝑘𝑘)!

2𝑠𝑠𝑘𝑘! (𝑠𝑠 − 𝑘𝑘)! (𝑠𝑠 − 2𝑘𝑘)!. (16) 

The recursive relation of Legendre polynomials, 𝐿𝐿𝑠𝑠(𝑎𝑎), is 
given as 

𝐿𝐿𝑠𝑠(𝑎𝑎) =
(2𝑠𝑠 − 1)𝑎𝑎𝐿𝐿𝑠𝑠−1(𝑎𝑎) − (𝑠𝑠 − 1)𝐿𝐿𝑠𝑠−2(𝑎𝑎)

𝑠𝑠 , (17) 

where 𝐿𝐿0(𝑎𝑎) = 1, 𝐿𝐿1(𝑎𝑎) = 𝑎𝑎 and 𝑠𝑠 >  1. 
The set of Legendre polynomials 𝐿𝐿𝑠𝑠(𝑎𝑎)  forms a complete 

orthogonal basis set on the interval [−1, 1] 

∫𝐿𝐿𝑝𝑝(𝑎𝑎)𝐿𝐿𝑞𝑞(𝑎𝑎) d𝑎𝑎
1

−1

= 2
2𝑝𝑝 + 1 𝛿𝛿𝑝𝑝𝑞𝑞 . (18) 

Spherical harmonics are orthonormal on the surface of the 
unit sphere per the relation 

∫∫ 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑌𝑌𝑛𝑛′𝑚𝑚′(𝜃𝜃,𝜑𝜑) sin𝜃𝜃 d𝜃𝜃 d𝜑𝜑
2𝜋𝜋

0

𝜋𝜋

0

= 𝛿𝛿𝑛𝑛𝑛𝑛′𝛿𝛿𝑚𝑚𝑚𝑚′. (19) 

The proposed 3D Chebyshev–Fourier moments are 
implemented in discrete domain for digital images, and thus 
Equation (11) becomes 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑∑∑𝑅𝑅𝑛𝑛(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚2 sin𝜃𝜃
2𝜋𝜋

𝑞𝑞=0

𝜋𝜋

𝜃𝜃=0

1

𝜚𝜚=0
, (20) 

and can be implemented in Cartesian coordinates as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑ ∑ ∑𝑅𝑅𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑌𝑌𝑛𝑛𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝑁𝑁−1

𝑧𝑧=0

𝑁𝑁−1

𝑦𝑦=0

𝑁𝑁−1

𝑥𝑥=0
. (21) 

since 𝜚𝜚2  sin𝜃𝜃  is the Jacobian of the transformation of 
Cartesian to spherical coordinates 𝜚𝜚,𝜃𝜃,𝜑𝜑, and after substituting 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. In the next section, the performance of the 
existing and proposed techniques on ATS and the non-ATS 
dataset is revealed. 

III. EXPERIMENTAL SETUP 

Pursuant to the objective set out in the above section, a 
comparative empirical analysis must be planned and performed 
thoroughly and rigorously. A detailed overview of the 
experimental method can be found in this section. 
 
A. Dataset Collection 

This section describes the process of converting the 
molecular structure of ATS into 2D and 3D computational data 
representation as illustrated in [39]. The ATS dataset used in 
this analysis is extracted from [1] which consists of 60 ATS 
molecular structure, while 60 non-ATS drug molecular 
structures are arbitrarily acquired from [40] to match the 
number of ATS. After the generation of the voxel data, the 3D 
geometric, complex, Legendre, Zernike, and Chebyshev–
Fourier moments are measured up to the 8th order, which 
produces 165 features. While the features of 3D geometric and 
Legendre moments are real numbers, 3D complex, Zernike, and 
Chebyshev–Fourier moments on the other hand are complex 
numbers. 
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Invariance to the labelling, molecular atoms numbering, and 
molecular translation and rotation is the necessary property of 
the molecular descriptor. Besides, it must also have a simple, 
algorithmically quantifiable description, and the values must be 
within the appropriate numerical range for the molecule set 
where applicable [21, 22]. Since the molecular descriptor is 
independent of the characteristics of the molecular 
representation, it is possible to consider the molecular form as 
an image and thus to apply the image processing to depict the 
shape of the molecular structure. 

Various molecular structure shape representation techniques 
have been proposed in the QShAR domain itself [13, 23]. In the 
meantime, several shape representations techniques have been 
explored in the pattern recognition and image processing 
domain to extract features from the object shapes. A good shape 
descriptor should be able to find physically similar forms, 
similar to human beings when comparing object shapes. One of 
the applications of 2D and 3D image processing methods is 
moment invariants (MI) which can easily achieve these 
invariance properties. MI is a special case of moments (the 
scalar quantity used to describe a function and to capture its key 
features) [24]. The first use of MI as a 3D molecular descriptor 
is the 3D Zernike descriptor, although it was implemented to 
represent the molecular surface of the protein structure [25]. 

There are some benefits to MI-based molecular form 
representation compared to traditional representations. First, 
MI-based descriptors enable easy retrieval and comparison of 
molecular structures. Second, due to its invariance properties, 
molecular structures do not need to be aligned for comparison. 
Finally, the resolution of the interpretation of the molecular 
structures can be conveniently and naturally modified by 
adjusting the order of the shape descriptors [25, 26]. 

However, it is very difficult to derive MI from a moment of 
technique, as it must follow the invariance requirements where 
the representation of an object must be invariant while the 
object is undergoing translation, size, and rotation 
transformation [27]. The goal of this study is, therefore, only to 
suggest a 3D moment-based molecular representation 
technique instead of an MI-based one, due to the advantages of 
3D molecular shape and its similarity to physical molecular 
structure. In contrast, the implementation of the MI-based 
molecular representation technique will be carried out 
extensively in future works, and this research will be used as 
the basis of the MI-based technique if the findings of this study 
are satisfactory. 

Before the proposed technique is defined and the rationale of 
the findings obtained is provided, the current moment-based 
techniques, which will also be used as a comparison of the 
proposed technique, must be discussed first. Thus, the rest of 
this paper is structured as follows. The proposed technique is 
introduced, and the experimental setup explaining the data 
source collection and experimental design is described in 
Sections 2 and 3, respectively. Meanwhile, Sections 4 and 5 
discusses the findings, hypotheses, and future works, 
respectively. 

II. PROPOSED 3D CHEBYSHEV–FOURIER MOMENTS 

Moments are used to create a series of numbers that uniquely 
describe the global characteristics of an image and have been 

used in a variety of fields, from mechanics and statistics to 
pattern recognition and image analysis [28]. References [29] 
and [30] were pioneering the use of moments to quantify image 
features in image processing and pattern recognition. 

A 2D image is regarded as piece-wise continuous real 
function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) of two variables defined on a compact support 
𝐷𝐷 ⊂ 𝑅𝑅 × 𝑅𝑅  and having a finite nonzero integral, which by 
extension is also applicable to 3D images. Some of the existing 
and well-known moments, including orthogonal moments, are 
geometric [29], complex (proposed by [31] and later extended 
by [32]), Legendre, and Zernike moments, both are proposed 
by [33]. 

On the other hand, the Chebyshev–Fourier moments was first 
introduced by [34], which was motivated by the findings of 
[35], which have shown that a polynomial that is invariant for 
any rotation of axes about the origin must be of the form 

𝑉𝑉(𝑟𝑟 cos𝜑𝜑 , 𝑟𝑟 sin𝜑𝜑) = 𝑅𝑅𝑠𝑠(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (1) 

where 𝑅𝑅𝑠𝑠(𝑟𝑟) is a radial polynomial in 𝑟𝑟 = √𝑥𝑥2 + 𝑦𝑦2 of degree 
𝑠𝑠 and 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞 is an angular part of the respective polynomial with 
𝑖𝑖̂ = √−1 and 𝜑𝜑 = arctan (𝑦𝑦𝑥𝑥). The area of orthogonality is a 
unit disk Ω = {(𝑥𝑥, 𝑦𝑦)|𝑥𝑥2 + 𝑦𝑦2 ≤ 1}. To calculate the moments, 
the image 𝑓𝑓(𝑥𝑥,𝑦𝑦) must be scaled such that it is fully contained 
in Ω  [36]. If the Chebyshev radial polynomial is used to 
construct an orthogonal function system to decompose an 
image, the orthogonal function system will be the invariant 
features of the picture. 

The definition of the shifted Chebyshev polynomial of the 
second kind is 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1), (2) 

where the function 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1) is the Chebyshev polynomial of 
the second kind defined as 

𝑈𝑈𝑠𝑠(cos𝜑𝜑) = sin(𝑠𝑠 + 1)𝜑𝜑
sin𝜑𝜑 , (3) 

with 

sin(𝑠𝑠 + 1)𝜑𝜑 = sin𝜑𝜑 [(2 cos𝜑𝜑)𝑠𝑠

− (𝑠𝑠 − 1
1 ) (2 cos𝜑𝜑)𝑠𝑠−2

+ (𝑠𝑠 − 2
2 ) (2 cos𝜑𝜑)𝑠𝑠−4 − ⋯ ]. 

(4) 

Let cos𝜑𝜑 = 2𝑟𝑟 − 1, then 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(cos𝜑𝜑) 

= ∑(−1)𝑘𝑘
(𝑠𝑠 − 𝑘𝑘)!

𝑘𝑘! (𝑠𝑠 − 2𝑘𝑘)! [2(2𝑟𝑟 − 1)]𝑠𝑠−2𝑘𝑘
𝑠𝑠+2
2

𝑘𝑘=0
. 

(5) 

The shifted Chebyshev polynomial of the second kind with 
the weighting function is orthogonal in the interval [0,1] as 

𝑤𝑤(𝑟𝑟) = √𝑟𝑟 − 𝑟𝑟2, (6) 

which satisfy the following orthogonality property to the weight 
function 
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Invariance to the labelling, molecular atoms numbering, and 
molecular translation and rotation is the necessary property of 
the molecular descriptor. Besides, it must also have a simple, 
algorithmically quantifiable description, and the values must be 
within the appropriate numerical range for the molecule set 
where applicable [21, 22]. Since the molecular descriptor is 
independent of the characteristics of the molecular 
representation, it is possible to consider the molecular form as 
an image and thus to apply the image processing to depict the 
shape of the molecular structure. 

Various molecular structure shape representation techniques 
have been proposed in the QShAR domain itself [13, 23]. In the 
meantime, several shape representations techniques have been 
explored in the pattern recognition and image processing 
domain to extract features from the object shapes. A good shape 
descriptor should be able to find physically similar forms, 
similar to human beings when comparing object shapes. One of 
the applications of 2D and 3D image processing methods is 
moment invariants (MI) which can easily achieve these 
invariance properties. MI is a special case of moments (the 
scalar quantity used to describe a function and to capture its key 
features) [24]. The first use of MI as a 3D molecular descriptor 
is the 3D Zernike descriptor, although it was implemented to 
represent the molecular surface of the protein structure [25]. 

There are some benefits to MI-based molecular form 
representation compared to traditional representations. First, 
MI-based descriptors enable easy retrieval and comparison of 
molecular structures. Second, due to its invariance properties, 
molecular structures do not need to be aligned for comparison. 
Finally, the resolution of the interpretation of the molecular 
structures can be conveniently and naturally modified by 
adjusting the order of the shape descriptors [25, 26]. 

However, it is very difficult to derive MI from a moment of 
technique, as it must follow the invariance requirements where 
the representation of an object must be invariant while the 
object is undergoing translation, size, and rotation 
transformation [27]. The goal of this study is, therefore, only to 
suggest a 3D moment-based molecular representation 
technique instead of an MI-based one, due to the advantages of 
3D molecular shape and its similarity to physical molecular 
structure. In contrast, the implementation of the MI-based 
molecular representation technique will be carried out 
extensively in future works, and this research will be used as 
the basis of the MI-based technique if the findings of this study 
are satisfactory. 

Before the proposed technique is defined and the rationale of 
the findings obtained is provided, the current moment-based 
techniques, which will also be used as a comparison of the 
proposed technique, must be discussed first. Thus, the rest of 
this paper is structured as follows. The proposed technique is 
introduced, and the experimental setup explaining the data 
source collection and experimental design is described in 
Sections 2 and 3, respectively. Meanwhile, Sections 4 and 5 
discusses the findings, hypotheses, and future works, 
respectively. 

II. PROPOSED 3D CHEBYSHEV–FOURIER MOMENTS 

Moments are used to create a series of numbers that uniquely 
describe the global characteristics of an image and have been 

used in a variety of fields, from mechanics and statistics to 
pattern recognition and image analysis [28]. References [29] 
and [30] were pioneering the use of moments to quantify image 
features in image processing and pattern recognition. 

A 2D image is regarded as piece-wise continuous real 
function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) of two variables defined on a compact support 
𝐷𝐷 ⊂ 𝑅𝑅 × 𝑅𝑅  and having a finite nonzero integral, which by 
extension is also applicable to 3D images. Some of the existing 
and well-known moments, including orthogonal moments, are 
geometric [29], complex (proposed by [31] and later extended 
by [32]), Legendre, and Zernike moments, both are proposed 
by [33]. 

On the other hand, the Chebyshev–Fourier moments was first 
introduced by [34], which was motivated by the findings of 
[35], which have shown that a polynomial that is invariant for 
any rotation of axes about the origin must be of the form 

𝑉𝑉(𝑟𝑟 cos𝜑𝜑 , 𝑟𝑟 sin𝜑𝜑) = 𝑅𝑅𝑠𝑠(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (1) 

where 𝑅𝑅𝑠𝑠(𝑟𝑟) is a radial polynomial in 𝑟𝑟 = √𝑥𝑥2 + 𝑦𝑦2 of degree 
𝑠𝑠 and 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞 is an angular part of the respective polynomial with 
𝑖𝑖̂ = √−1 and 𝜑𝜑 = arctan (𝑦𝑦𝑥𝑥). The area of orthogonality is a 
unit disk Ω = {(𝑥𝑥, 𝑦𝑦)|𝑥𝑥2 + 𝑦𝑦2 ≤ 1}. To calculate the moments, 
the image 𝑓𝑓(𝑥𝑥, 𝑦𝑦) must be scaled such that it is fully contained 
in Ω  [36]. If the Chebyshev radial polynomial is used to 
construct an orthogonal function system to decompose an 
image, the orthogonal function system will be the invariant 
features of the picture. 

The definition of the shifted Chebyshev polynomial of the 
second kind is 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1), (2) 

where the function 𝑈𝑈𝑠𝑠(2𝑟𝑟 − 1) is the Chebyshev polynomial of 
the second kind defined as 

𝑈𝑈𝑠𝑠(cos𝜑𝜑) = sin(𝑠𝑠 + 1)𝜑𝜑
sin𝜑𝜑 , (3) 

with 

sin(𝑠𝑠 + 1)𝜑𝜑 = sin𝜑𝜑 [(2 cos𝜑𝜑)𝑠𝑠

− (𝑠𝑠 − 1
1 ) (2 cos𝜑𝜑)𝑠𝑠−2

+ (𝑠𝑠 − 2
2 ) (2 cos𝜑𝜑)𝑠𝑠−4 − ⋯ ]. 

(4) 

Let cos𝜑𝜑 = 2𝑟𝑟 − 1, then 

𝑈𝑈𝑠𝑠∗(𝑟𝑟) = 𝑈𝑈𝑠𝑠(cos𝜑𝜑) 

= ∑(−1)𝑘𝑘
(𝑠𝑠 − 𝑘𝑘)!

𝑘𝑘! (𝑠𝑠 − 2𝑘𝑘)! [2(2𝑟𝑟 − 1)]𝑠𝑠−2𝑘𝑘
𝑠𝑠+2
2

𝑘𝑘=0
. 

(5) 

The shifted Chebyshev polynomial of the second kind with 
the weighting function is orthogonal in the interval [0,1] as 

𝑤𝑤(𝑟𝑟) = √𝑟𝑟 − 𝑟𝑟2, (6) 

which satisfy the following orthogonality property to the weight 
function 
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∫𝑈𝑈𝑝𝑝∗(𝑟𝑟)𝑈𝑈𝑞𝑞∗(𝑟𝑟)𝑤𝑤(𝑟𝑟) d𝑟𝑟
1

0

= 𝜋𝜋
8 𝛿𝛿𝑝𝑝𝑞𝑞 , (7) 

where 𝛿𝛿𝑝𝑝𝑞𝑞 is the Kronecker delta, 𝛿𝛿𝑝𝑝𝑞𝑞 = 1 if 𝑝𝑝 = 𝑞𝑞 and 𝛿𝛿𝑝𝑝𝑞𝑞 =
0 otherwise. 

From Equations (5) and (7), the radial polynomial is 

𝑅𝑅𝑠𝑠(𝑟𝑟) = √ 8
𝜋𝜋𝑟𝑟𝑤𝑤(𝑟𝑟)𝑈𝑈𝑠𝑠∗(𝑟𝑟) (8) 

then the orthogonality property becomes 

∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑅𝑅𝑞𝑞(𝑟𝑟)𝑟𝑟 d𝑟𝑟
1

0

= 𝛿𝛿𝑝𝑝𝑞𝑞 , (9) 

Thus, the Chebyshev–Fourier moments can be defined as 

Ψ𝑝𝑝𝑞𝑞 = ∫ ∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞𝑓𝑓(𝑟𝑟,𝜑𝜑)𝑟𝑟 d𝑟𝑟 d𝜑𝜑
1

0

2𝜋𝜋

0

. (10) 

This study proposes the extension of Chebyshev–Fourier 
moments for 3D images. The proposed 3D Chebyshev–Fourier 
moments is adopting the generalization of n-dimensional 
moments on a sphere [36, 37], and defined as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∫ ∫∫𝑅𝑅𝑠𝑠(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚 d𝜚𝜚 d𝜃𝜃 d𝜑𝜑
1

0

𝜋𝜋

0

2𝜋𝜋

0

, (11) 

where 𝑅𝑅𝑠𝑠(𝜚𝜚) is the radial polynomial given in Equation (8) with 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 , 𝜃𝜃 = arctan (𝑦𝑦𝑥𝑥) , and 𝜑𝜑 = arccos (𝑧𝑧𝜚𝜚) . 
The 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) is the spherical harmonics [38] defined as 

𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) = √2𝑙𝑙 + 1
4𝜋𝜋

(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!𝑃𝑃𝑛𝑛

𝑚𝑚(cos 𝜃𝜃) 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (12) 

where 𝑃𝑃𝑛𝑛𝑚𝑚 is an associated Legendre function defined as 

𝑃𝑃𝑛𝑛𝑚𝑚(𝑎𝑎) = (−1)𝑚𝑚(1 − 𝑎𝑎2)
𝑚𝑚
2 ( d

d𝑎𝑎)
𝑚𝑚
𝐿𝐿𝑛𝑛(𝑎𝑎), (13) 

and 𝐿𝐿𝑛𝑛(𝑎𝑎) is a Legendre polynomial defined as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝑐𝑐𝑘𝑘,𝑠𝑠𝑎𝑎𝑘𝑘
𝑠𝑠

𝑘𝑘=0
= (−1)𝑠𝑠

2𝑠𝑠𝑠𝑠! ( d
d𝑎𝑎)

𝑠𝑠
[(1 − 𝑎𝑎2)𝑠𝑠], (14) 

which can also be written as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝐷𝐷𝑠𝑠𝑘𝑘𝑎𝑎𝑠𝑠−2𝑘𝑘
⌊𝑠𝑠2⌋

𝑘𝑘=0
, (15) 

with 

𝐷𝐷𝑠𝑠𝑘𝑘 = (−1)𝑘𝑘
(2𝑠𝑠 − 2𝑘𝑘)!

2𝑠𝑠𝑘𝑘! (𝑠𝑠 − 𝑘𝑘)! (𝑠𝑠 − 2𝑘𝑘)!. (16) 

The recursive relation of Legendre polynomials, 𝐿𝐿𝑠𝑠(𝑎𝑎), is 
given as 

𝐿𝐿𝑠𝑠(𝑎𝑎) =
(2𝑠𝑠 − 1)𝑎𝑎𝐿𝐿𝑠𝑠−1(𝑎𝑎) − (𝑠𝑠 − 1)𝐿𝐿𝑠𝑠−2(𝑎𝑎)

𝑠𝑠 , (17) 

where 𝐿𝐿0(𝑎𝑎) = 1, 𝐿𝐿1(𝑎𝑎) = 𝑎𝑎 and 𝑠𝑠 >  1. 
The set of Legendre polynomials 𝐿𝐿𝑠𝑠(𝑎𝑎)  forms a complete 

orthogonal basis set on the interval [−1, 1] 

∫𝐿𝐿𝑝𝑝(𝑎𝑎)𝐿𝐿𝑞𝑞(𝑎𝑎) d𝑎𝑎
1

−1

= 2
2𝑝𝑝 + 1 𝛿𝛿𝑝𝑝𝑞𝑞 . (18) 

Spherical harmonics are orthonormal on the surface of the 
unit sphere per the relation 

∫∫ 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑌𝑌𝑛𝑛′𝑚𝑚′(𝜃𝜃,𝜑𝜑) sin𝜃𝜃 d𝜃𝜃 d𝜑𝜑
2𝜋𝜋

0

𝜋𝜋

0

= 𝛿𝛿𝑛𝑛𝑛𝑛′𝛿𝛿𝑚𝑚𝑚𝑚′. (19) 

The proposed 3D Chebyshev–Fourier moments are 
implemented in discrete domain for digital images, and thus 
Equation (11) becomes 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑∑∑𝑅𝑅𝑛𝑛(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚2 sin𝜃𝜃
2𝜋𝜋

𝑞𝑞=0

𝜋𝜋

𝜃𝜃=0

1

𝜚𝜚=0
, (20) 

and can be implemented in Cartesian coordinates as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑ ∑ ∑𝑅𝑅𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑌𝑌𝑛𝑛𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝑁𝑁−1

𝑧𝑧=0

𝑁𝑁−1

𝑦𝑦=0

𝑁𝑁−1

𝑥𝑥=0
. (21) 

since 𝜚𝜚2  sin𝜃𝜃  is the Jacobian of the transformation of 
Cartesian to spherical coordinates 𝜚𝜚,𝜃𝜃,𝜑𝜑, and after substituting 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. In the next section, the performance of the 
existing and proposed techniques on ATS and the non-ATS 
dataset is revealed. 

III. EXPERIMENTAL SETUP 

Pursuant to the objective set out in the above section, a 
comparative empirical analysis must be planned and performed 
thoroughly and rigorously. A detailed overview of the 
experimental method can be found in this section. 
 
A. Dataset Collection 

This section describes the process of converting the 
molecular structure of ATS into 2D and 3D computational data 
representation as illustrated in [39]. The ATS dataset used in 
this analysis is extracted from [1] which consists of 60 ATS 
molecular structure, while 60 non-ATS drug molecular 
structures are arbitrarily acquired from [40] to match the 
number of ATS. After the generation of the voxel data, the 3D 
geometric, complex, Legendre, Zernike, and Chebyshev–
Fourier moments are measured up to the 8th order, which 
produces 165 features. While the features of 3D geometric and 
Legendre moments are real numbers, 3D complex, Zernike, and 
Chebyshev–Fourier moments on the other hand are complex 
numbers. 
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∫𝑈𝑈𝑝𝑝∗(𝑟𝑟)𝑈𝑈𝑞𝑞∗(𝑟𝑟)𝑤𝑤(𝑟𝑟) d𝑟𝑟
1

0

= 𝜋𝜋
8 𝛿𝛿𝑝𝑝𝑞𝑞 , (7) 

where 𝛿𝛿𝑝𝑝𝑞𝑞 is the Kronecker delta, 𝛿𝛿𝑝𝑝𝑞𝑞 = 1 if 𝑝𝑝 = 𝑞𝑞 and 𝛿𝛿𝑝𝑝𝑞𝑞 =
0 otherwise. 

From Equations (5) and (7), the radial polynomial is 

𝑅𝑅𝑠𝑠(𝑟𝑟) = √ 8
𝜋𝜋𝑟𝑟𝑤𝑤(𝑟𝑟)𝑈𝑈𝑠𝑠∗(𝑟𝑟) (8) 

then the orthogonality property becomes 

∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑅𝑅𝑞𝑞(𝑟𝑟)𝑟𝑟 d𝑟𝑟
1

0

= 𝛿𝛿𝑝𝑝𝑞𝑞 , (9) 

Thus, the Chebyshev–Fourier moments can be defined as 

Ψ𝑝𝑝𝑞𝑞 = ∫ ∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞𝑓𝑓(𝑟𝑟,𝜑𝜑)𝑟𝑟 d𝑟𝑟 d𝜑𝜑
1

0

2𝜋𝜋

0

. (10) 

This study proposes the extension of Chebyshev–Fourier 
moments for 3D images. The proposed 3D Chebyshev–Fourier 
moments is adopting the generalization of n-dimensional 
moments on a sphere [36, 37], and defined as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∫ ∫∫𝑅𝑅𝑠𝑠(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚 d𝜚𝜚 d𝜃𝜃 d𝜑𝜑
1

0

𝜋𝜋

0

2𝜋𝜋

0

, (11) 

where 𝑅𝑅𝑠𝑠(𝜚𝜚) is the radial polynomial given in Equation (8) with 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 , 𝜃𝜃 = arctan (𝑦𝑦𝑥𝑥) , and 𝜑𝜑 = arccos (𝑧𝑧𝜚𝜚) . 
The 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) is the spherical harmonics [38] defined as 

𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) = √2𝑙𝑙 + 1
4𝜋𝜋

(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!𝑃𝑃𝑛𝑛

𝑚𝑚(cos 𝜃𝜃) 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (12) 

where 𝑃𝑃𝑛𝑛𝑚𝑚 is an associated Legendre function defined as 

𝑃𝑃𝑛𝑛𝑚𝑚(𝑎𝑎) = (−1)𝑚𝑚(1 − 𝑎𝑎2)
𝑚𝑚
2 ( d

d𝑎𝑎)
𝑚𝑚
𝐿𝐿𝑛𝑛(𝑎𝑎), (13) 

and 𝐿𝐿𝑛𝑛(𝑎𝑎) is a Legendre polynomial defined as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝑐𝑐𝑘𝑘,𝑠𝑠𝑎𝑎𝑘𝑘
𝑠𝑠

𝑘𝑘=0
= (−1)𝑠𝑠

2𝑠𝑠𝑠𝑠! ( d
d𝑎𝑎)

𝑠𝑠
[(1 − 𝑎𝑎2)𝑠𝑠], (14) 

which can also be written as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝐷𝐷𝑠𝑠𝑘𝑘𝑎𝑎𝑠𝑠−2𝑘𝑘
⌊𝑠𝑠2⌋

𝑘𝑘=0
, (15) 

with 

𝐷𝐷𝑠𝑠𝑘𝑘 = (−1)𝑘𝑘
(2𝑠𝑠 − 2𝑘𝑘)!

2𝑠𝑠𝑘𝑘! (𝑠𝑠 − 𝑘𝑘)! (𝑠𝑠 − 2𝑘𝑘)!. (16) 

The recursive relation of Legendre polynomials, 𝐿𝐿𝑠𝑠(𝑎𝑎), is 
given as 

𝐿𝐿𝑠𝑠(𝑎𝑎) =
(2𝑠𝑠 − 1)𝑎𝑎𝐿𝐿𝑠𝑠−1(𝑎𝑎) − (𝑠𝑠 − 1)𝐿𝐿𝑠𝑠−2(𝑎𝑎)

𝑠𝑠 , (17) 

where 𝐿𝐿0(𝑎𝑎) = 1, 𝐿𝐿1(𝑎𝑎) = 𝑎𝑎 and 𝑠𝑠 >  1. 
The set of Legendre polynomials 𝐿𝐿𝑠𝑠(𝑎𝑎)  forms a complete 

orthogonal basis set on the interval [−1, 1] 

∫𝐿𝐿𝑝𝑝(𝑎𝑎)𝐿𝐿𝑞𝑞(𝑎𝑎) d𝑎𝑎
1

−1

= 2
2𝑝𝑝 + 1 𝛿𝛿𝑝𝑝𝑞𝑞 . (18) 

Spherical harmonics are orthonormal on the surface of the 
unit sphere per the relation 

∫∫ 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑌𝑌𝑛𝑛′𝑚𝑚′(𝜃𝜃,𝜑𝜑) sin𝜃𝜃 d𝜃𝜃 d𝜑𝜑
2𝜋𝜋

0

𝜋𝜋

0

= 𝛿𝛿𝑛𝑛𝑛𝑛′𝛿𝛿𝑚𝑚𝑚𝑚′. (19) 

The proposed 3D Chebyshev–Fourier moments are 
implemented in discrete domain for digital images, and thus 
Equation (11) becomes 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑∑∑𝑅𝑅𝑛𝑛(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚2 sin𝜃𝜃
2𝜋𝜋

𝑞𝑞=0

𝜋𝜋

𝜃𝜃=0

1

𝜚𝜚=0
, (20) 

and can be implemented in Cartesian coordinates as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑ ∑ ∑𝑅𝑅𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑌𝑌𝑛𝑛𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝑁𝑁−1

𝑧𝑧=0

𝑁𝑁−1

𝑦𝑦=0

𝑁𝑁−1

𝑥𝑥=0
. (21) 

since 𝜚𝜚2  sin𝜃𝜃  is the Jacobian of the transformation of 
Cartesian to spherical coordinates 𝜚𝜚,𝜃𝜃,𝜑𝜑, and after substituting 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. In the next section, the performance of the 
existing and proposed techniques on ATS and the non-ATS 
dataset is revealed. 

III. EXPERIMENTAL SETUP 

Pursuant to the objective set out in the above section, a 
comparative empirical analysis must be planned and performed 
thoroughly and rigorously. A detailed overview of the 
experimental method can be found in this section. 
 
A. Dataset Collection 

This section describes the process of converting the 
molecular structure of ATS into 2D and 3D computational data 
representation as illustrated in [39]. The ATS dataset used in 
this analysis is extracted from [1] which consists of 60 ATS 
molecular structure, while 60 non-ATS drug molecular 
structures are arbitrarily acquired from [40] to match the 
number of ATS. After the generation of the voxel data, the 3D 
geometric, complex, Legendre, Zernike, and Chebyshev–
Fourier moments are measured up to the 8th order, which 
produces 165 features. While the features of 3D geometric and 
Legendre moments are real numbers, 3D complex, Zernike, and 
Chebyshev–Fourier moments on the other hand are complex 
numbers. 
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∫𝑈𝑈𝑝𝑝∗(𝑟𝑟)𝑈𝑈𝑞𝑞∗(𝑟𝑟)𝑤𝑤(𝑟𝑟) d𝑟𝑟
1

0

= 𝜋𝜋
8 𝛿𝛿𝑝𝑝𝑞𝑞 , (7) 

where 𝛿𝛿𝑝𝑝𝑞𝑞 is the Kronecker delta, 𝛿𝛿𝑝𝑝𝑞𝑞 = 1 if 𝑝𝑝 = 𝑞𝑞 and 𝛿𝛿𝑝𝑝𝑞𝑞 =
0 otherwise. 

From Equations (5) and (7), the radial polynomial is 

𝑅𝑅𝑠𝑠(𝑟𝑟) = √ 8
𝜋𝜋𝑟𝑟𝑤𝑤(𝑟𝑟)𝑈𝑈𝑠𝑠∗(𝑟𝑟) (8) 

then the orthogonality property becomes 

∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑅𝑅𝑞𝑞(𝑟𝑟)𝑟𝑟 d𝑟𝑟
1

0

= 𝛿𝛿𝑝𝑝𝑞𝑞 , (9) 

Thus, the Chebyshev–Fourier moments can be defined as 

Ψ𝑝𝑝𝑞𝑞 = ∫ ∫𝑅𝑅𝑝𝑝(𝑟𝑟)𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞𝑓𝑓(𝑟𝑟,𝜑𝜑)𝑟𝑟 d𝑟𝑟 d𝜑𝜑
1

0

2𝜋𝜋

0

. (10) 

This study proposes the extension of Chebyshev–Fourier 
moments for 3D images. The proposed 3D Chebyshev–Fourier 
moments is adopting the generalization of n-dimensional 
moments on a sphere [36, 37], and defined as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∫ ∫∫𝑅𝑅𝑠𝑠(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚 d𝜚𝜚 d𝜃𝜃 d𝜑𝜑
1

0

𝜋𝜋

0

2𝜋𝜋

0

, (11) 

where 𝑅𝑅𝑠𝑠(𝜚𝜚) is the radial polynomial given in Equation (8) with 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 , 𝜃𝜃 = arctan (𝑦𝑦𝑥𝑥) , and 𝜑𝜑 = arccos (𝑧𝑧𝜚𝜚) . 
The 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) is the spherical harmonics [38] defined as 

𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑) = √2𝑙𝑙 + 1
4𝜋𝜋

(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!𝑃𝑃𝑛𝑛

𝑚𝑚(cos 𝜃𝜃) 𝑒𝑒−�̂�𝑖𝑞𝑞𝑞𝑞, (12) 

where 𝑃𝑃𝑛𝑛𝑚𝑚 is an associated Legendre function defined as 

𝑃𝑃𝑛𝑛𝑚𝑚(𝑎𝑎) = (−1)𝑚𝑚(1 − 𝑎𝑎2)
𝑚𝑚
2 ( d

d𝑎𝑎)
𝑚𝑚
𝐿𝐿𝑛𝑛(𝑎𝑎), (13) 

and 𝐿𝐿𝑛𝑛(𝑎𝑎) is a Legendre polynomial defined as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝑐𝑐𝑘𝑘,𝑠𝑠𝑎𝑎𝑘𝑘
𝑠𝑠

𝑘𝑘=0
= (−1)𝑠𝑠

2𝑠𝑠𝑠𝑠! ( d
d𝑎𝑎)

𝑠𝑠
[(1 − 𝑎𝑎2)𝑠𝑠], (14) 

which can also be written as 

𝐿𝐿𝑠𝑠(𝑎𝑎) = ∑𝐷𝐷𝑠𝑠𝑘𝑘𝑎𝑎𝑠𝑠−2𝑘𝑘
⌊𝑠𝑠2⌋

𝑘𝑘=0
, (15) 

with 

𝐷𝐷𝑠𝑠𝑘𝑘 = (−1)𝑘𝑘
(2𝑠𝑠 − 2𝑘𝑘)!

2𝑠𝑠𝑘𝑘! (𝑠𝑠 − 𝑘𝑘)! (𝑠𝑠 − 2𝑘𝑘)!. (16) 

The recursive relation of Legendre polynomials, 𝐿𝐿𝑠𝑠(𝑎𝑎), is 
given as 

𝐿𝐿𝑠𝑠(𝑎𝑎) =
(2𝑠𝑠 − 1)𝑎𝑎𝐿𝐿𝑠𝑠−1(𝑎𝑎) − (𝑠𝑠 − 1)𝐿𝐿𝑠𝑠−2(𝑎𝑎)

𝑠𝑠 , (17) 

where 𝐿𝐿0(𝑎𝑎) = 1, 𝐿𝐿1(𝑎𝑎) = 𝑎𝑎 and 𝑠𝑠 >  1. 
The set of Legendre polynomials 𝐿𝐿𝑠𝑠(𝑎𝑎)  forms a complete 

orthogonal basis set on the interval [−1, 1] 

∫𝐿𝐿𝑝𝑝(𝑎𝑎)𝐿𝐿𝑞𝑞(𝑎𝑎) d𝑎𝑎
1

−1

= 2
2𝑝𝑝 + 1 𝛿𝛿𝑝𝑝𝑞𝑞 . (18) 

Spherical harmonics are orthonormal on the surface of the 
unit sphere per the relation 

∫∫ 𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑌𝑌𝑛𝑛′𝑚𝑚′(𝜃𝜃,𝜑𝜑) sin𝜃𝜃 d𝜃𝜃 d𝜑𝜑
2𝜋𝜋

0

𝜋𝜋

0

= 𝛿𝛿𝑛𝑛𝑛𝑛′𝛿𝛿𝑚𝑚𝑚𝑚′. (19) 

The proposed 3D Chebyshev–Fourier moments are 
implemented in discrete domain for digital images, and thus 
Equation (11) becomes 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑∑∑𝑅𝑅𝑛𝑛(𝜚𝜚)𝑌𝑌𝑛𝑛𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑓𝑓(𝜚𝜚,𝜃𝜃,𝜑𝜑)𝜚𝜚2 sin𝜃𝜃
2𝜋𝜋

𝑞𝑞=0

𝜋𝜋

𝜃𝜃=0

1

𝜚𝜚=0
, (20) 

and can be implemented in Cartesian coordinates as 

Ψ𝑛𝑛𝑛𝑛
𝑚𝑚

= ∑ ∑ ∑𝑅𝑅𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑌𝑌𝑛𝑛𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝑁𝑁−1

𝑧𝑧=0

𝑁𝑁−1

𝑦𝑦=0

𝑁𝑁−1

𝑥𝑥=0
. (21) 

since 𝜚𝜚2  sin𝜃𝜃  is the Jacobian of the transformation of 
Cartesian to spherical coordinates 𝜚𝜚,𝜃𝜃,𝜑𝜑, and after substituting 
𝜚𝜚 = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. In the next section, the performance of the 
existing and proposed techniques on ATS and the non-ATS 
dataset is revealed. 

III. EXPERIMENTAL SETUP 

Pursuant to the objective set out in the above section, a 
comparative empirical analysis must be planned and performed 
thoroughly and rigorously. A detailed overview of the 
experimental method can be found in this section. 
 
A. Dataset Collection 

This section describes the process of converting the 
molecular structure of ATS into 2D and 3D computational data 
representation as illustrated in [39]. The ATS dataset used in 
this analysis is extracted from [1] which consists of 60 ATS 
molecular structure, while 60 non-ATS drug molecular 
structures are arbitrarily acquired from [40] to match the 
number of ATS. After the generation of the voxel data, the 3D 
geometric, complex, Legendre, Zernike, and Chebyshev–
Fourier moments are measured up to the 8th order, which 
produces 165 features. While the features of 3D geometric and 
Legendre moments are real numbers, 3D complex, Zernike, and 
Chebyshev–Fourier moments on the other hand are complex 
numbers. 
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Therefore, these complex numbers need to be converted into 
real numbers, so most of the pattern recognition tasks can only 
handle real numbers. Reference [41] suggested a method 
consisting of four techniques to represent a complex number as 
a real number, and the Cartesian bit interleaved was found to be 
the best representation technique. The value of the zeroth-order 
moments of ecstasy for each 3D moment represented using the 
Cartesian bit interleaved is shown in Table I. 

 
TABLE I 

CARTESIAN BIT INTERLEAVED VALUES OF ZEROTH-ORDER MOMENTS OF 
ECSTASY FOR EACH 3D MOMENTS 

3D moments Original number Represented number 
Geometric 306425 4254572170020069956 

7041133799352041472 
Complex 16130711836.218561 4257684755048437479 

8153183560267891362 
Legendre 0.000285380519926548 1417517392444323061 

8113893434503725056 
Zernike 7708.229987404831 4253810814878636215 

5157822007266511528 
Chebyshev–
Fourier 

9344.919014397588 4253854169438291160 
4971099286388998786 

 
B. Operational Procedure 

The conventional structure of the tasks of pattern recognition, 
which are pre-processing, feature extraction and classification, 
will be used in this article. This paper will therefore compare 
the efficiency of the existing and proposed 3D moments. All 
extracted instances were tested using the training and testing 
dataset mentioned earlier for processing time, memory usage, 
intra-and inter-class variation, and classification of the drug 
molecular structure using the leave-one-out classification 
model, all of which were completed 50 times. 

The quartile dispersion coefficient (QCD) of the normalized 
median absolute deviation (NMAD) is used to explicate the 
quality of the characteristics of each moment technique in terms 
of intra-and inter-class variance. Intra-and inter-class variance 
is a common option to calculate the similarity or dissimilarity 
of a representation technique [42]. QCD calculates dispersion 

and is used to make comparisons between and within data sets 
[43], and it is defined as 

𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 = 𝑄𝑄3𝑖𝑖 − 𝑄𝑄1𝑖𝑖
𝑄𝑄3𝑖𝑖 + 𝑄𝑄1𝑖𝑖

, (22) 

where 𝑄𝑄1𝑖𝑖  and 𝑄𝑄3𝑖𝑖  are the first and third quartile of the 𝑖𝑖 th 
feature set, respectively. Meanwhile the median absolute 
deviation (MAD) is a stable alternative to the standard deviation 
since it does not impact the outliers [44]. However, the MAD 
may differ in various cases, so it should be normalized to the 
original function in order to ensure consistency with different 
data, such that 

NMAD𝑖𝑖 = MAD𝑖𝑖
𝑥𝑥𝑖𝑖

. (23) 

In this analysis, intra-class variance is classified as NMAD 
QCD for the 𝑖𝑖th feature of a molecular structure compared to 
intra-class molecular structures, and inter-class variance is 
defined as NMAD QCD for the 𝑖𝑖th feature compared to inter-
class molecular structures. 

On the other hand, the features are evaluated in terms of 
classification accuracy against the well-known Random Forest 
(RF) classifier [45] from WEKA Machine Learning Package 
[46]. RF is used in this study because previous studies 
conducted by [47-51] found that RF is the most appropriate for 
molecular structure data. In this analysis, the number of trees 
used by RF is 165, equal to the number of attributes of all 3D 
moments. 

IV. RESULTS AND DISCUSSION 

Current and proposed 3D moments will be evaluated 
numerically in this section to determine their merit and 
consistency in molecular structure representation. Table II 
displays the average processing time, the memory usage, the 
intra-class variance ratio relative to the total number of features, 
and the average classification accuracy of 50 executions. 

 

 
TABLE II 

AVERAGE OF PROCESSING TIME, MEMORY USAGE, AND INTRA-CLASS VARIANCE RATIO OF 3D MOMENTS 
3D moments Processing Time (ns/voxel) Memory Usage (byte/voxel) Intra-class Variance Ratio Classification Accuracy 
Geometric 13 419 92.12% 63.42% 
Complex 39 841 77.58% 60.43% 
Legendre 16 1195 67.88% 73.50% 
Zernike 59 4405 64.24% 71.58% 
Chebyshev–Fourier 474 2426 87.88% 72.30% 
 
The outcomes presented in Table II show that despite 3D 

Chebyshev–Fourier performs slowest and second-highest 
memory usage among other 3D moments, it ranks in second for 
intra-class variance ratio and classification accuracy. The slow 
performance high memory usage of 3D Chebyshev–Fourier is 
attributed to its polynomial computation which is time 
consuming. Since the classification accuracy is the main 
consideration of this study, the results should undergo statistical 
validation. 

The results of the classification accuracy should be tested for 
normality before conducting the statistical validation. If the 

results are normally distributed, parametric tests, such as 
ANOVA [52], may be used to verify the accuracy of the 
classification, otherwise non-parametric tests should be used 
instead. The normality of the classification accuracy is tested in 
this analysis using the Shapiro–Wilk test of normality [53]. The 
outcome of the test of normality is shown in Table III, which 
shows that the precision of the classification for all 3D moments 
is normally distributed (𝑝𝑝 >  0.05) , except for geometric 
moments. 
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Therefore, these complex numbers need to be converted into 
real numbers, so most of the pattern recognition tasks can only 
handle real numbers. Reference [41] suggested a method 
consisting of four techniques to represent a complex number as 
a real number, and the Cartesian bit interleaved was found to be 
the best representation technique. The value of the zeroth-order 
moments of ecstasy for each 3D moment represented using the 
Cartesian bit interleaved is shown in Table I. 

 
TABLE I 

CARTESIAN BIT INTERLEAVED VALUES OF ZEROTH-ORDER MOMENTS OF 
ECSTASY FOR EACH 3D MOMENTS 

3D moments Original number Represented number 
Geometric 306425 4254572170020069956 

7041133799352041472 
Complex 16130711836.218561 4257684755048437479 

8153183560267891362 
Legendre 0.000285380519926548 1417517392444323061 

8113893434503725056 
Zernike 7708.229987404831 4253810814878636215 

5157822007266511528 
Chebyshev–
Fourier 

9344.919014397588 4253854169438291160 
4971099286388998786 

 
B. Operational Procedure 

The conventional structure of the tasks of pattern recognition, 
which are pre-processing, feature extraction and classification, 
will be used in this article. This paper will therefore compare 
the efficiency of the existing and proposed 3D moments. All 
extracted instances were tested using the training and testing 
dataset mentioned earlier for processing time, memory usage, 
intra-and inter-class variation, and classification of the drug 
molecular structure using the leave-one-out classification 
model, all of which were completed 50 times. 

The quartile dispersion coefficient (QCD) of the normalized 
median absolute deviation (NMAD) is used to explicate the 
quality of the characteristics of each moment technique in terms 
of intra-and inter-class variance. Intra-and inter-class variance 
is a common option to calculate the similarity or dissimilarity 
of a representation technique [42]. QCD calculates dispersion 

and is used to make comparisons between and within data sets 
[43], and it is defined as 

𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 = 𝑄𝑄3𝑖𝑖 − 𝑄𝑄1𝑖𝑖
𝑄𝑄3𝑖𝑖 + 𝑄𝑄1𝑖𝑖

, (22) 

where 𝑄𝑄1𝑖𝑖  and 𝑄𝑄3𝑖𝑖  are the first and third quartile of the 𝑖𝑖 th 
feature set, respectively. Meanwhile the median absolute 
deviation (MAD) is a stable alternative to the standard deviation 
since it does not impact the outliers [44]. However, the MAD 
may differ in various cases, so it should be normalized to the 
original function in order to ensure consistency with different 
data, such that 

NMAD𝑖𝑖 = MAD𝑖𝑖
𝑥𝑥𝑖𝑖

. (23) 

In this analysis, intra-class variance is classified as NMAD 
QCD for the 𝑖𝑖th feature of a molecular structure compared to 
intra-class molecular structures, and inter-class variance is 
defined as NMAD QCD for the 𝑖𝑖th feature compared to inter-
class molecular structures. 

On the other hand, the features are evaluated in terms of 
classification accuracy against the well-known Random Forest 
(RF) classifier [45] from WEKA Machine Learning Package 
[46]. RF is used in this study because previous studies 
conducted by [47-51] found that RF is the most appropriate for 
molecular structure data. In this analysis, the number of trees 
used by RF is 165, equal to the number of attributes of all 3D 
moments. 

IV. RESULTS AND DISCUSSION 

Current and proposed 3D moments will be evaluated 
numerically in this section to determine their merit and 
consistency in molecular structure representation. Table II 
displays the average processing time, the memory usage, the 
intra-class variance ratio relative to the total number of features, 
and the average classification accuracy of 50 executions. 

 

 
TABLE II 

AVERAGE OF PROCESSING TIME, MEMORY USAGE, AND INTRA-CLASS VARIANCE RATIO OF 3D MOMENTS 
3D moments Processing Time (ns/voxel) Memory Usage (byte/voxel) Intra-class Variance Ratio Classification Accuracy 
Geometric 13 419 92.12% 63.42% 
Complex 39 841 77.58% 60.43% 
Legendre 16 1195 67.88% 73.50% 
Zernike 59 4405 64.24% 71.58% 
Chebyshev–Fourier 474 2426 87.88% 72.30% 
 
The outcomes presented in Table II show that despite 3D 

Chebyshev–Fourier performs slowest and second-highest 
memory usage among other 3D moments, it ranks in second for 
intra-class variance ratio and classification accuracy. The slow 
performance high memory usage of 3D Chebyshev–Fourier is 
attributed to its polynomial computation which is time 
consuming. Since the classification accuracy is the main 
consideration of this study, the results should undergo statistical 
validation. 

The results of the classification accuracy should be tested for 
normality before conducting the statistical validation. If the 

results are normally distributed, parametric tests, such as 
ANOVA [52], may be used to verify the accuracy of the 
classification, otherwise non-parametric tests should be used 
instead. The normality of the classification accuracy is tested in 
this analysis using the Shapiro–Wilk test of normality [53]. The 
outcome of the test of normality is shown in Table III, which 
shows that the precision of the classification for all 3D moments 
is normally distributed (𝑝𝑝 >  0.05) , except for geometric 
moments. 
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TABLE III 
TESTS OF NORMALITY RESULTS 

3D moments Statistic df Sig. (p) 
Geometric 0.933 50 0.007 
Complex 0.978 50 0.480 
Legendre 0.973 50 0.305 
Zernike 0.975 50 0.353 
Chebyshev–Fourier 0.97 50 0.240 
 
Therefore, the assumption of ANOVA has been violated and 

the Kruskal–Wallis H tests must be used instead. The Kruskal–
Wallis H test results for the classification accuracy are shown 
in Table IV, with the post-hoc results using multiple Mann–
Whitney U test statistic are shown in Table V. It should be noted 
that the post-hoc test results shown in Table V only show the 
comparison between 3D Chebyshev–Fourier moments against 
other 3D moments, also known as planned contrast, and thus 
statistical tests conducted is to validate the proposed technique. 

 
TABLE IV 

KRUSKAL–WALLIS H TEST RESULTS FOR CLASSIFICATION ACCURACY 
Kruskal-Wallis H df Asymp. Sig. 
192.932 4 0 

 
TABLE V 

POST-HOC TEST RESULTS USING MULTIPLE MANN–WHITNEY U TESTS 
AGAINTS 3D CHEBYSHEV–FOURIER MOMENTS 

Opposing 3D 
moments 

Mann-
Whitney U 

Wilcoxon 
W 

Z Asymp. Sig. 
(2-tailed) 

Geometric 1.5 1276.5 -8.635 < .001 
Complex 0 1275 -8.639 < .001 
Legendre 806 2081 -3.092 0.002 
Zernike 973 2248 -1.926 0.54 
 
Based on the results shown in Table IV, there are a 

statistically significant effect of classification accuracy 
[𝐻𝐻(4) = 192.932, 𝑝𝑝 = 0]. The degree of freedom (𝑑𝑑𝑑𝑑) of this 
test is the number of groups minus one, which in this case is 5 
groups, and thus the 𝑑𝑑𝑑𝑑 = 4 . Post-hoc comparisons using 
multiple Mann–Whitney U test on each pair of groups and 
adjusting the 𝑝𝑝 value with the Bonferroni method to avoid Type 
I error [54] shown in Table V indicated that there is a 
statistically significant difference between the classification 
accuracy of 3D Chebyshev–Fourier moments and other 3D 
moments techniques (𝑝𝑝 < 𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0.005) , with one 
exception to 3D Zernike moments (𝑈𝑈 = 973, 𝑝𝑝 = 0.54). 

Despite providing a second highest performance after 3D 
Legendre moments and without significant difference to 3D 
Zernike moments in third place, this study nevertheless 
proposes a new 3D moments technique and shows that the 
proposed 3D Chebyshev–Fourier possesses certain potentials to 
be explored in the future, most notably on its invariance 
properties. 

V. CONCLUSION  
A new 3D moments technique to represent ATS molecular 

structure has been proposed and the extensive comparative 
study to the existing 3D moments has been presented in this 
paper, namely 3D Chebyshev–Fourier moments. Despite the 
experiments have shown that the proposed technique performs 
better compared to most of existing 3D moments in terms of 

processing time and memory usage, but nonetheless it has 
shown potential in intra- and inter-class variance, and more 
importantly, classification accuracy. Thus, this study serves as 
a basis towards a better 3D molecular structure representation, 
especially on using continuous orthogonal moments defined on 
a sphere. 

Hence, future works to extend the proposed technique so that 
it has invariance properties, as well as better representing the 
molecular structure based on this preliminary study are 
required. The proposed feature extraction technique will be 
further validated in the future works using specifically-tailored 
classifiers for drug shape representation. Furthermore, ATS 
molecular structure data from National Poison Centre, 
Malaysia, will also be used as additional dataset in the future 
works. 
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Therefore, these complex numbers need to be converted into 
real numbers, so most of the pattern recognition tasks can only 
handle real numbers. Reference [41] suggested a method 
consisting of four techniques to represent a complex number as 
a real number, and the Cartesian bit interleaved was found to be 
the best representation technique. The value of the zeroth-order 
moments of ecstasy for each 3D moment represented using the 
Cartesian bit interleaved is shown in Table I. 

 
TABLE I 

CARTESIAN BIT INTERLEAVED VALUES OF ZEROTH-ORDER MOMENTS OF 
ECSTASY FOR EACH 3D MOMENTS 

3D moments Original number Represented number 
Geometric 306425 4254572170020069956 

7041133799352041472 
Complex 16130711836.218561 4257684755048437479 

8153183560267891362 
Legendre 0.000285380519926548 1417517392444323061 

8113893434503725056 
Zernike 7708.229987404831 4253810814878636215 

5157822007266511528 
Chebyshev–
Fourier 

9344.919014397588 4253854169438291160 
4971099286388998786 

 
B. Operational Procedure 

The conventional structure of the tasks of pattern recognition, 
which are pre-processing, feature extraction and classification, 
will be used in this article. This paper will therefore compare 
the efficiency of the existing and proposed 3D moments. All 
extracted instances were tested using the training and testing 
dataset mentioned earlier for processing time, memory usage, 
intra-and inter-class variation, and classification of the drug 
molecular structure using the leave-one-out classification 
model, all of which were completed 50 times. 

The quartile dispersion coefficient (QCD) of the normalized 
median absolute deviation (NMAD) is used to explicate the 
quality of the characteristics of each moment technique in terms 
of intra-and inter-class variance. Intra-and inter-class variance 
is a common option to calculate the similarity or dissimilarity 
of a representation technique [42]. QCD calculates dispersion 

and is used to make comparisons between and within data sets 
[43], and it is defined as 

𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 = 𝑄𝑄3𝑖𝑖 − 𝑄𝑄1𝑖𝑖
𝑄𝑄3𝑖𝑖 + 𝑄𝑄1𝑖𝑖

, (22) 

where 𝑄𝑄1𝑖𝑖  and 𝑄𝑄3𝑖𝑖  are the first and third quartile of the 𝑖𝑖 th 
feature set, respectively. Meanwhile the median absolute 
deviation (MAD) is a stable alternative to the standard deviation 
since it does not impact the outliers [44]. However, the MAD 
may differ in various cases, so it should be normalized to the 
original function in order to ensure consistency with different 
data, such that 

NMAD𝑖𝑖 = MAD𝑖𝑖
𝑥𝑥𝑖𝑖

. (23) 

In this analysis, intra-class variance is classified as NMAD 
QCD for the 𝑖𝑖th feature of a molecular structure compared to 
intra-class molecular structures, and inter-class variance is 
defined as NMAD QCD for the 𝑖𝑖th feature compared to inter-
class molecular structures. 

On the other hand, the features are evaluated in terms of 
classification accuracy against the well-known Random Forest 
(RF) classifier [45] from WEKA Machine Learning Package 
[46]. RF is used in this study because previous studies 
conducted by [47-51] found that RF is the most appropriate for 
molecular structure data. In this analysis, the number of trees 
used by RF is 165, equal to the number of attributes of all 3D 
moments. 

IV. RESULTS AND DISCUSSION 

Current and proposed 3D moments will be evaluated 
numerically in this section to determine their merit and 
consistency in molecular structure representation. Table II 
displays the average processing time, the memory usage, the 
intra-class variance ratio relative to the total number of features, 
and the average classification accuracy of 50 executions. 

 

 
TABLE II 

AVERAGE OF PROCESSING TIME, MEMORY USAGE, AND INTRA-CLASS VARIANCE RATIO OF 3D MOMENTS 
3D moments Processing Time (ns/voxel) Memory Usage (byte/voxel) Intra-class Variance Ratio Classification Accuracy 
Geometric 13 419 92.12% 63.42% 
Complex 39 841 77.58% 60.43% 
Legendre 16 1195 67.88% 73.50% 
Zernike 59 4405 64.24% 71.58% 
Chebyshev–Fourier 474 2426 87.88% 72.30% 
 
The outcomes presented in Table II show that despite 3D 

Chebyshev–Fourier performs slowest and second-highest 
memory usage among other 3D moments, it ranks in second for 
intra-class variance ratio and classification accuracy. The slow 
performance high memory usage of 3D Chebyshev–Fourier is 
attributed to its polynomial computation which is time 
consuming. Since the classification accuracy is the main 
consideration of this study, the results should undergo statistical 
validation. 

The results of the classification accuracy should be tested for 
normality before conducting the statistical validation. If the 

results are normally distributed, parametric tests, such as 
ANOVA [52], may be used to verify the accuracy of the 
classification, otherwise non-parametric tests should be used 
instead. The normality of the classification accuracy is tested in 
this analysis using the Shapiro–Wilk test of normality [53]. The 
outcome of the test of normality is shown in Table III, which 
shows that the precision of the classification for all 3D moments 
is normally distributed (𝑝𝑝 >  0.05) , except for geometric 
moments. 
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may differ in various cases, so it should be normalized to the 
original function in order to ensure consistency with different 
data, such that 

NMAD𝑖𝑖 = MAD𝑖𝑖
𝑥𝑥𝑖𝑖

. (23) 

In this analysis, intra-class variance is classified as NMAD 
QCD for the 𝑖𝑖th feature of a molecular structure compared to 
intra-class molecular structures, and inter-class variance is 
defined as NMAD QCD for the 𝑖𝑖th feature compared to inter-
class molecular structures. 

On the other hand, the features are evaluated in terms of 
classification accuracy against the well-known Random Forest 
(RF) classifier [45] from WEKA Machine Learning Package 
[46]. RF is used in this study because previous studies 
conducted by [47-51] found that RF is the most appropriate for 
molecular structure data. In this analysis, the number of trees 
used by RF is 165, equal to the number of attributes of all 3D 
moments. 

IV. RESULTS AND DISCUSSION 

Current and proposed 3D moments will be evaluated 
numerically in this section to determine their merit and 
consistency in molecular structure representation. Table II 
displays the average processing time, the memory usage, the 
intra-class variance ratio relative to the total number of features, 
and the average classification accuracy of 50 executions. 

 

 
TABLE II 

AVERAGE OF PROCESSING TIME, MEMORY USAGE, AND INTRA-CLASS VARIANCE RATIO OF 3D MOMENTS 
3D moments Processing Time (ns/voxel) Memory Usage (byte/voxel) Intra-class Variance Ratio Classification Accuracy 
Geometric 13 419 92.12% 63.42% 
Complex 39 841 77.58% 60.43% 
Legendre 16 1195 67.88% 73.50% 
Zernike 59 4405 64.24% 71.58% 
Chebyshev–Fourier 474 2426 87.88% 72.30% 
 
The outcomes presented in Table II show that despite 3D 

Chebyshev–Fourier performs slowest and second-highest 
memory usage among other 3D moments, it ranks in second for 
intra-class variance ratio and classification accuracy. The slow 
performance high memory usage of 3D Chebyshev–Fourier is 
attributed to its polynomial computation which is time 
consuming. Since the classification accuracy is the main 
consideration of this study, the results should undergo statistical 
validation. 

The results of the classification accuracy should be tested for 
normality before conducting the statistical validation. If the 

results are normally distributed, parametric tests, such as 
ANOVA [52], may be used to verify the accuracy of the 
classification, otherwise non-parametric tests should be used 
instead. The normality of the classification accuracy is tested in 
this analysis using the Shapiro–Wilk test of normality [53]. The 
outcome of the test of normality is shown in Table III, which 
shows that the precision of the classification for all 3D moments 
is normally distributed (𝑝𝑝 >  0.05) , except for geometric 
moments. 
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Therefore, these complex numbers need to be converted into 
real numbers, so most of the pattern recognition tasks can only 
handle real numbers. Reference [41] suggested a method 
consisting of four techniques to represent a complex number as 
a real number, and the Cartesian bit interleaved was found to be 
the best representation technique. The value of the zeroth-order 
moments of ecstasy for each 3D moment represented using the 
Cartesian bit interleaved is shown in Table I. 
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CARTESIAN BIT INTERLEAVED VALUES OF ZEROTH-ORDER MOMENTS OF 
ECSTASY FOR EACH 3D MOMENTS 

3D moments Original number Represented number 
Geometric 306425 4254572170020069956 

7041133799352041472 
Complex 16130711836.218561 4257684755048437479 

8153183560267891362 
Legendre 0.000285380519926548 1417517392444323061 

8113893434503725056 
Zernike 7708.229987404831 4253810814878636215 

5157822007266511528 
Chebyshev–
Fourier 

9344.919014397588 4253854169438291160 
4971099286388998786 

 
B. Operational Procedure 

The conventional structure of the tasks of pattern recognition, 
which are pre-processing, feature extraction and classification, 
will be used in this article. This paper will therefore compare 
the efficiency of the existing and proposed 3D moments. All 
extracted instances were tested using the training and testing 
dataset mentioned earlier for processing time, memory usage, 
intra-and inter-class variation, and classification of the drug 
molecular structure using the leave-one-out classification 
model, all of which were completed 50 times. 

The quartile dispersion coefficient (QCD) of the normalized 
median absolute deviation (NMAD) is used to explicate the 
quality of the characteristics of each moment technique in terms 
of intra-and inter-class variance. Intra-and inter-class variance 
is a common option to calculate the similarity or dissimilarity 
of a representation technique [42]. QCD calculates dispersion 

and is used to make comparisons between and within data sets 
[43], and it is defined as 
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TABLE III 
TESTS OF NORMALITY RESULTS 

3D moments Statistic df Sig. (p) 
Geometric 0.933 50 0.007 
Complex 0.978 50 0.480 
Legendre 0.973 50 0.305 
Zernike 0.975 50 0.353 
Chebyshev–Fourier 0.97 50 0.240 
 
Therefore, the assumption of ANOVA has been violated and 

the Kruskal–Wallis H tests must be used instead. The Kruskal–
Wallis H test results for the classification accuracy are shown 
in Table IV, with the post-hoc results using multiple Mann–
Whitney U test statistic are shown in Table V. It should be noted 
that the post-hoc test results shown in Table V only show the 
comparison between 3D Chebyshev–Fourier moments against 
other 3D moments, also known as planned contrast, and thus 
statistical tests conducted is to validate the proposed technique. 

 
TABLE IV 

KRUSKAL–WALLIS H TEST RESULTS FOR CLASSIFICATION ACCURACY 
Kruskal-Wallis H df Asymp. Sig. 
192.932 4 0 

 
TABLE V 

POST-HOC TEST RESULTS USING MULTIPLE MANN–WHITNEY U TESTS 
AGAINTS 3D CHEBYSHEV–FOURIER MOMENTS 

Opposing 3D 
moments 

Mann-
Whitney U 

Wilcoxon 
W 

Z Asymp. Sig. 
(2-tailed) 

Geometric 1.5 1276.5 -8.635 < .001 
Complex 0 1275 -8.639 < .001 
Legendre 806 2081 -3.092 0.002 
Zernike 973 2248 -1.926 0.54 
 
Based on the results shown in Table IV, there are a 

statistically significant effect of classification accuracy 
[𝐻𝐻(4) = 192.932, 𝑝𝑝 = 0]. The degree of freedom (𝑑𝑑𝑑𝑑) of this 
test is the number of groups minus one, which in this case is 5 
groups, and thus the 𝑑𝑑𝑑𝑑 = 4 . Post-hoc comparisons using 
multiple Mann–Whitney U test on each pair of groups and 
adjusting the 𝑝𝑝 value with the Bonferroni method to avoid Type 
I error [54] shown in Table V indicated that there is a 
statistically significant difference between the classification 
accuracy of 3D Chebyshev–Fourier moments and other 3D 
moments techniques (𝑝𝑝 < 𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0.005) , with one 
exception to 3D Zernike moments (𝑈𝑈 = 973, 𝑝𝑝 = 0.54). 

Despite providing a second highest performance after 3D 
Legendre moments and without significant difference to 3D 
Zernike moments in third place, this study nevertheless 
proposes a new 3D moments technique and shows that the 
proposed 3D Chebyshev–Fourier possesses certain potentials to 
be explored in the future, most notably on its invariance 
properties. 

V. CONCLUSION  
A new 3D moments technique to represent ATS molecular 

structure has been proposed and the extensive comparative 
study to the existing 3D moments has been presented in this 
paper, namely 3D Chebyshev–Fourier moments. Despite the 
experiments have shown that the proposed technique performs 
better compared to most of existing 3D moments in terms of 

processing time and memory usage, but nonetheless it has 
shown potential in intra- and inter-class variance, and more 
importantly, classification accuracy. Thus, this study serves as 
a basis towards a better 3D molecular structure representation, 
especially on using continuous orthogonal moments defined on 
a sphere. 

Hence, future works to extend the proposed technique so that 
it has invariance properties, as well as better representing the 
molecular structure based on this preliminary study are 
required. The proposed feature extraction technique will be 
further validated in the future works using specifically-tailored 
classifiers for drug shape representation. Furthermore, ATS 
molecular structure data from National Poison Centre, 
Malaysia, will also be used as additional dataset in the future 
works. 
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TABLE III 
TESTS OF NORMALITY RESULTS 

3D moments Statistic df Sig. (p) 
Geometric 0.933 50 0.007 
Complex 0.978 50 0.480 
Legendre 0.973 50 0.305 
Zernike 0.975 50 0.353 
Chebyshev–Fourier 0.97 50 0.240 
 
Therefore, the assumption of ANOVA has been violated and 

the Kruskal–Wallis H tests must be used instead. The Kruskal–
Wallis H test results for the classification accuracy are shown 
in Table IV, with the post-hoc results using multiple Mann–
Whitney U test statistic are shown in Table V. It should be noted 
that the post-hoc test results shown in Table V only show the 
comparison between 3D Chebyshev–Fourier moments against 
other 3D moments, also known as planned contrast, and thus 
statistical tests conducted is to validate the proposed technique. 

 
TABLE IV 

KRUSKAL–WALLIS H TEST RESULTS FOR CLASSIFICATION ACCURACY 
Kruskal-Wallis H df Asymp. Sig. 
192.932 4 0 

 
TABLE V 

POST-HOC TEST RESULTS USING MULTIPLE MANN–WHITNEY U TESTS 
AGAINTS 3D CHEBYSHEV–FOURIER MOMENTS 

Opposing 3D 
moments 

Mann-
Whitney U 

Wilcoxon 
W 

Z Asymp. Sig. 
(2-tailed) 

Geometric 1.5 1276.5 -8.635 < .001 
Complex 0 1275 -8.639 < .001 
Legendre 806 2081 -3.092 0.002 
Zernike 973 2248 -1.926 0.54 
 
Based on the results shown in Table IV, there are a 

statistically significant effect of classification accuracy 
[𝐻𝐻(4) = 192.932, 𝑝𝑝 = 0]. The degree of freedom (𝑑𝑑𝑑𝑑) of this 
test is the number of groups minus one, which in this case is 5 
groups, and thus the 𝑑𝑑𝑑𝑑 = 4 . Post-hoc comparisons using 
multiple Mann–Whitney U test on each pair of groups and 
adjusting the 𝑝𝑝 value with the Bonferroni method to avoid Type 
I error [54] shown in Table V indicated that there is a 
statistically significant difference between the classification 
accuracy of 3D Chebyshev–Fourier moments and other 3D 
moments techniques (𝑝𝑝 < 𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0.005) , with one 
exception to 3D Zernike moments (𝑈𝑈 = 973, 𝑝𝑝 = 0.54). 

Despite providing a second highest performance after 3D 
Legendre moments and without significant difference to 3D 
Zernike moments in third place, this study nevertheless 
proposes a new 3D moments technique and shows that the 
proposed 3D Chebyshev–Fourier possesses certain potentials to 
be explored in the future, most notably on its invariance 
properties. 

V. CONCLUSION  
A new 3D moments technique to represent ATS molecular 

structure has been proposed and the extensive comparative 
study to the existing 3D moments has been presented in this 
paper, namely 3D Chebyshev–Fourier moments. Despite the 
experiments have shown that the proposed technique performs 
better compared to most of existing 3D moments in terms of 

processing time and memory usage, but nonetheless it has 
shown potential in intra- and inter-class variance, and more 
importantly, classification accuracy. Thus, this study serves as 
a basis towards a better 3D molecular structure representation, 
especially on using continuous orthogonal moments defined on 
a sphere. 

Hence, future works to extend the proposed technique so that 
it has invariance properties, as well as better representing the 
molecular structure based on this preliminary study are 
required. The proposed feature extraction technique will be 
further validated in the future works using specifically-tailored 
classifiers for drug shape representation. Furthermore, ATS 
molecular structure data from National Poison Centre, 
Malaysia, will also be used as additional dataset in the future 
works. 
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