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Abstract— Malware attacks are still increasing up till today. This 
situation will cause many unwanted disturbances in the network or 
system that is being attacked by malware. Furthermore, malware is 
hard to identify due to the huge amount of samples and its unknown 
activities. Therefore, an automated tool is needed to analyze the 
malware samples and identify their activities. Due to that, a malware 
analysis will be integrated within the tool to be able to address the 
activities of the malware. The analysis method used is the hybrid 
analysis technique which, it combined both static and dynamic 
analysis techniques. Static analysis technique is a technique where 
malware is dissected, and reverse engineered to gain more information 
without executing the malware. Contrary to static analysis, dynamic 
analysis will execute the malware in a secure environment to further 
observe the behavior and activities carried out by the malware. In 
addition, a classification method via an application programming 
interface (API) calls made by the malware is implemented within the 
tool that capable to differentiate between a normal program and 
malware. The development of the automated tool is used Java and 
Python language. The result will be determined by the ability of 
logging and identifying the malware activities via an API call, and the 
ability to classify and differentiate between a malware and a normal 
program. In conclusion, the integration of malware analysis techniques 
and classification techniques will help provide more information to 
identify and differentiate a malware from normal programs. 

 
Index Terms— Malware, Malware Analysis, Malware 
Classification, Tool. 

I. INTRODUCTION 

alicious software also known as malware is utilized or 
made by attackers to disturb PC activity, gain access to 
sensitive information or access private computer systems 

unauthorized [1]. There are multiple types of malware 
throughout the history of the Internet that has been known to 
mankind, some of which includes the viruses, worms, Trojans, 
rootkits, ransomwares, key loggers and graywares. 

According to Cohen [2], the definition of a virus is a program 
that can infect other programs by hijacking to include a 
potentially evolved duplicate of itself. Worm, as defined by 
Weaver, Paxson, Staniford, & Cunningham [3] is a program 
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as 
defined by Windows [4] is a program that seems like a legit 
program, however it carries out some illegal action when it is 
run. According to Landi [5], rootkits are programs and codes 
which are able to be undetected either permanently or 
consistently on a PC. On the other hand, Brewer [6] defines 
ransomware is a type of malware using cryptography to encrypt 
files on the hard disk and prevents access to it while some also 
blackmails the victim by threatening to spread victim’s personal 
information unless the ransom is paid. Ahmed, Maarof, Hassan, 

& Abshir [7] describes a key logger as a malware that records 
the client's keystroke on the keyboard. Fortinet [8] defined 
grayware as a term used for a variety of programs that are 
installed on a client's PC to track or potentially send certain data 
back to some other source. 

Over the last decade, the number of malware has increased 
tremendously starting from 2007 all the way until today [9]. The 
increase in the amount of new malware from Q4 of year 2015 
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year 
2018 are represented in Figure 1 and Figure 2 respectively. 
Based on these figures, malware attacks are increased rapidly. 
Thus, there is a need to identify and analyze the malware 
activities or behavior in order to identify the malware and their 
attacks. 
 

 
Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3, 
2017 [11] 

 

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3, 
2018 [11]  

II. RELATED WORKS 

In this section, the malware analysis techniques and 
classification techniques are discussed. 
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A. Malware Analysis Techniques 
Malware analysis is a technique which malware analysts use 

to identify the functions of a malware. There are three types of 
analysis technique which includes, static analysis, dynamic 
analysis and dynamic analysis. Static analysis is the technique 
of investigating an application without executing it [12]. This is 
made possible through program analyzers, debuggers and 
disassemblers. As for dynamic analysis, it is referred to as 
analyzing the activities performed by a program while it is 
being executed in a safe environment [12]. Hybrid analysis is 
the combination of both static and dynamic analysis. 

Static analysis can be divided into two approaches which are 
basic and advanced static analysis. Basic static analysis 
comprises of analyzing the executable file without looking at 
the real codes which includes antivirus scanning, hashing for 
fingerprinting, finding strings that may bring significant 
meaning, checking if the file is packed, performing YARA rule 
checking and checking the imported linked libraries and 
functions [13].  

Advanced static analysis comprises of figuring out the 
malware's codes to find out what the program does by reversing 
the application using a disassembler. Be that as it may, 
advanced static analysis requires in-depth knowledge of 
disassembly, code constructs, Windows API, Registry, 
Networking API and kernels as well as performing reverse 
engineering using IDA or other disassemblers [14]. With more 
experience, advanced static analysis will be easier. 

Dynamic analysis can be divided into two approaches which 
are basic and advanced dynamic analysis. Usually, dynamic 
analysis is done after the static analysis has been done on the 
application. Basic dynamic analysis is the act of running the 
malware and watching its action on the system keeping in mind 
that the end goal is to clean the system, deliver useful trace, or 
both. Nonetheless, before running a malware, it is required to 
set up a safe environment to analyses the running malware 
without danger of harming the host system [15]. Furthermore, 
the basic dynamic analysis includes using a sandbox, running 
the malware, monitoring the process with Process Monitor and 
Process Explorer, comparing registry snapshots for change in 
the registry and packet sniffing using Wireshark to determine 
traffic flow [16].  

On the other hand, advanced dynamic analysis utilizes a 
debugger to look at the code of a running malware. A debugger 
is a type of application utilized to perform checks or to study 
the execution of another program. Advanced dynamic analysis 
methods make it easier to extract information regarding an 
executable as the data is gained during runtime. This is to 
ensure any obfuscation of code has been undone and is in plain 
assembly for easier readability. Advanced dynamic analysis 
requires knowledge of debugging, using a debugger and having 
the knowledge of kernels. Furthermore, there are different types 
of debugger which are source-level debugger and assembly 
debugger and two modes for debugging which are kernel-mode 
and user-mode debugging [17]. 

 
B. Malware Classification Techniques 

Malware classification is a method to categorize malware 
based on different aspects such as how they get executed, how 
they spread, and/or what they do. There are many ways to 

classify malware such as using the machine learning engine, 
comparing the binary content and frequency of instruction. 

Classification with machine learning utilizes an arrangement 
of pre-characterized samples to create a model which can be 
utilized for future classification. The classifier will learn with 
the use of training samples to create a classifier model [18]. 
Perdisci, Lanzi, & Lee [19] proposed an extension of this 
method, where malwares are to be unpacked before 
classification. The extension’s method was to have a classifier 
to identify if the executable is packed or not, having a universal 
unpacked and a classifier to differentiate if the code is malicious 
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine 
learning in their proposed system to classify malware base on 
scalable clustering and classification, incremental analysis of 
malware behaviour and extensive evaluation with real malware. 

Binary content comparison for malware classification uses 4 
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The 
methods are generating block of codes, extracting features from 
the block, data mining and comparison and correlation. Firstly, 
the block generator module separates the byte-level code of a 
given file into blocks. Then the feature extraction module will 
use a total of 13 different features which are Simpson’s Index, 
Canberra Distance, Minkowski Distance of Order, Manhattan 
Distance, Chebyshev Distance, Bray Curtis Distance, Angular 
Separation, Correlation Coefficient, Entropy, Kullback - 
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito 
Divergence and Total Variation. Next, after the features are 
extracted, the data mining module will utilise the decision tree 
and Boosting (Ada-BoostM1) which is implemented in WEKA 
to classify the input file. Finally, the comparison and correlation 
module will find the similarity between blocks and classify 
whether the input file is malicious or benign. Kim, Kang, & Im 
[22] stated that it is possible to classify malware by dividing the 
codes into smaller segment and analyse the divided code. There 
are four modules which are the disassembler, block divider, 
major block selector, and similarity calculator. The 
disassembler will change the input file into a set of instructions 
while the block divider will separate the instructions from the 
disassembler into many blocks using the retn instruction as the 
end of a block. Next, the major block selector will scan all 
blocks for function call instructions which use the call or jump 
instruction. Finally, the similarity calculator will compare 
dataset from a database with the major block from the major 
block selector section. 

Instruction frequency-based malware classification utilizes 
information from both malware and legit files [22]. The 
classification is made by identifying the frequency of 
instructions from a set of instructions that are malicious. This 
allows the classifier to differentiate between a malware and a 
legit file. Bilar [23] proposed using opcodes to classify malware 
where a dataset is created by using PEiD to collect PE header 
information of the malware and legit file. Next, a list of opcodes 
was taken from the samples and added along with the list in 
Wikipedia to a total of 398 IA-32 opcodes. From the extraction 
of opcodes from the samples, the result of extraction was 
compared to the list of opcodes and broken down into the most 
frequent opcodes for malware. Finally, from the list of most 
frequent opcodes, statistics were made to obtain a result that 
shows the difference between malware and clean files. Han, 
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A. Malware Analysis Techniques 
Malware analysis is a technique which malware analysts use 

to identify the functions of a malware. There are three types of 
analysis technique which includes, static analysis, dynamic 
analysis and dynamic analysis. Static analysis is the technique 
of investigating an application without executing it [12]. This is 
made possible through program analyzers, debuggers and 
disassemblers. As for dynamic analysis, it is referred to as 
analyzing the activities performed by a program while it is 
being executed in a safe environment [12]. Hybrid analysis is 
the combination of both static and dynamic analysis. 

Static analysis can be divided into two approaches which are 
basic and advanced static analysis. Basic static analysis 
comprises of analyzing the executable file without looking at 
the real codes which includes antivirus scanning, hashing for 
fingerprinting, finding strings that may bring significant 
meaning, checking if the file is packed, performing YARA rule 
checking and checking the imported linked libraries and 
functions [13].  

Advanced static analysis comprises of figuring out the 
malware's codes to find out what the program does by reversing 
the application using a disassembler. Be that as it may, 
advanced static analysis requires in-depth knowledge of 
disassembly, code constructs, Windows API, Registry, 
Networking API and kernels as well as performing reverse 
engineering using IDA or other disassemblers [14]. With more 
experience, advanced static analysis will be easier. 

Dynamic analysis can be divided into two approaches which 
are basic and advanced dynamic analysis. Usually, dynamic 
analysis is done after the static analysis has been done on the 
application. Basic dynamic analysis is the act of running the 
malware and watching its action on the system keeping in mind 
that the end goal is to clean the system, deliver useful trace, or 
both. Nonetheless, before running a malware, it is required to 
set up a safe environment to analyses the running malware 
without danger of harming the host system [15]. Furthermore, 
the basic dynamic analysis includes using a sandbox, running 
the malware, monitoring the process with Process Monitor and 
Process Explorer, comparing registry snapshots for change in 
the registry and packet sniffing using Wireshark to determine 
traffic flow [16].  

On the other hand, advanced dynamic analysis utilizes a 
debugger to look at the code of a running malware. A debugger 
is a type of application utilized to perform checks or to study 
the execution of another program. Advanced dynamic analysis 
methods make it easier to extract information regarding an 
executable as the data is gained during runtime. This is to 
ensure any obfuscation of code has been undone and is in plain 
assembly for easier readability. Advanced dynamic analysis 
requires knowledge of debugging, using a debugger and having 
the knowledge of kernels. Furthermore, there are different types 
of debugger which are source-level debugger and assembly 
debugger and two modes for debugging which are kernel-mode 
and user-mode debugging [17]. 

 
B. Malware Classification Techniques 

Malware classification is a method to categorize malware 
based on different aspects such as how they get executed, how 
they spread, and/or what they do. There are many ways to 

classify malware such as using the machine learning engine, 
comparing the binary content and frequency of instruction. 

Classification with machine learning utilizes an arrangement 
of pre-characterized samples to create a model which can be 
utilized for future classification. The classifier will learn with 
the use of training samples to create a classifier model [18]. 
Perdisci, Lanzi, & Lee [19] proposed an extension of this 
method, where malwares are to be unpacked before 
classification. The extension’s method was to have a classifier 
to identify if the executable is packed or not, having a universal 
unpacked and a classifier to differentiate if the code is malicious 
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine 
learning in their proposed system to classify malware base on 
scalable clustering and classification, incremental analysis of 
malware behaviour and extensive evaluation with real malware. 

Binary content comparison for malware classification uses 4 
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The 
methods are generating block of codes, extracting features from 
the block, data mining and comparison and correlation. Firstly, 
the block generator module separates the byte-level code of a 
given file into blocks. Then the feature extraction module will 
use a total of 13 different features which are Simpson’s Index, 
Canberra Distance, Minkowski Distance of Order, Manhattan 
Distance, Chebyshev Distance, Bray Curtis Distance, Angular 
Separation, Correlation Coefficient, Entropy, Kullback - 
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito 
Divergence and Total Variation. Next, after the features are 
extracted, the data mining module will utilise the decision tree 
and Boosting (Ada-BoostM1) which is implemented in WEKA 
to classify the input file. Finally, the comparison and correlation 
module will find the similarity between blocks and classify 
whether the input file is malicious or benign. Kim, Kang, & Im 
[22] stated that it is possible to classify malware by dividing the 
codes into smaller segment and analyse the divided code. There 
are four modules which are the disassembler, block divider, 
major block selector, and similarity calculator. The 
disassembler will change the input file into a set of instructions 
while the block divider will separate the instructions from the 
disassembler into many blocks using the retn instruction as the 
end of a block. Next, the major block selector will scan all 
blocks for function call instructions which use the call or jump 
instruction. Finally, the similarity calculator will compare 
dataset from a database with the major block from the major 
block selector section. 

Instruction frequency-based malware classification utilizes 
information from both malware and legit files [22]. The 
classification is made by identifying the frequency of 
instructions from a set of instructions that are malicious. This 
allows the classifier to differentiate between a malware and a 
legit file. Bilar [23] proposed using opcodes to classify malware 
where a dataset is created by using PEiD to collect PE header 
information of the malware and legit file. Next, a list of opcodes 
was taken from the samples and added along with the list in 
Wikipedia to a total of 398 IA-32 opcodes. From the extraction 
of opcodes from the samples, the result of extraction was 
compared to the list of opcodes and broken down into the most 
frequent opcodes for malware. Finally, from the list of most 
frequent opcodes, statistics were made to obtain a result that 
shows the difference between malware and clean files. Han, 
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Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 
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A. Malware Analysis Techniques 
Malware analysis is a technique which malware analysts use 

to identify the functions of a malware. There are three types of 
analysis technique which includes, static analysis, dynamic 
analysis and dynamic analysis. Static analysis is the technique 
of investigating an application without executing it [12]. This is 
made possible through program analyzers, debuggers and 
disassemblers. As for dynamic analysis, it is referred to as 
analyzing the activities performed by a program while it is 
being executed in a safe environment [12]. Hybrid analysis is 
the combination of both static and dynamic analysis. 

Static analysis can be divided into two approaches which are 
basic and advanced static analysis. Basic static analysis 
comprises of analyzing the executable file without looking at 
the real codes which includes antivirus scanning, hashing for 
fingerprinting, finding strings that may bring significant 
meaning, checking if the file is packed, performing YARA rule 
checking and checking the imported linked libraries and 
functions [13].  

Advanced static analysis comprises of figuring out the 
malware's codes to find out what the program does by reversing 
the application using a disassembler. Be that as it may, 
advanced static analysis requires in-depth knowledge of 
disassembly, code constructs, Windows API, Registry, 
Networking API and kernels as well as performing reverse 
engineering using IDA or other disassemblers [14]. With more 
experience, advanced static analysis will be easier. 

Dynamic analysis can be divided into two approaches which 
are basic and advanced dynamic analysis. Usually, dynamic 
analysis is done after the static analysis has been done on the 
application. Basic dynamic analysis is the act of running the 
malware and watching its action on the system keeping in mind 
that the end goal is to clean the system, deliver useful trace, or 
both. Nonetheless, before running a malware, it is required to 
set up a safe environment to analyses the running malware 
without danger of harming the host system [15]. Furthermore, 
the basic dynamic analysis includes using a sandbox, running 
the malware, monitoring the process with Process Monitor and 
Process Explorer, comparing registry snapshots for change in 
the registry and packet sniffing using Wireshark to determine 
traffic flow [16].  

On the other hand, advanced dynamic analysis utilizes a 
debugger to look at the code of a running malware. A debugger 
is a type of application utilized to perform checks or to study 
the execution of another program. Advanced dynamic analysis 
methods make it easier to extract information regarding an 
executable as the data is gained during runtime. This is to 
ensure any obfuscation of code has been undone and is in plain 
assembly for easier readability. Advanced dynamic analysis 
requires knowledge of debugging, using a debugger and having 
the knowledge of kernels. Furthermore, there are different types 
of debugger which are source-level debugger and assembly 
debugger and two modes for debugging which are kernel-mode 
and user-mode debugging [17]. 

 
B. Malware Classification Techniques 

Malware classification is a method to categorize malware 
based on different aspects such as how they get executed, how 
they spread, and/or what they do. There are many ways to 

classify malware such as using the machine learning engine, 
comparing the binary content and frequency of instruction. 

Classification with machine learning utilizes an arrangement 
of pre-characterized samples to create a model which can be 
utilized for future classification. The classifier will learn with 
the use of training samples to create a classifier model [18]. 
Perdisci, Lanzi, & Lee [19] proposed an extension of this 
method, where malwares are to be unpacked before 
classification. The extension’s method was to have a classifier 
to identify if the executable is packed or not, having a universal 
unpacked and a classifier to differentiate if the code is malicious 
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine 
learning in their proposed system to classify malware base on 
scalable clustering and classification, incremental analysis of 
malware behaviour and extensive evaluation with real malware. 

Binary content comparison for malware classification uses 4 
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The 
methods are generating block of codes, extracting features from 
the block, data mining and comparison and correlation. Firstly, 
the block generator module separates the byte-level code of a 
given file into blocks. Then the feature extraction module will 
use a total of 13 different features which are Simpson’s Index, 
Canberra Distance, Minkowski Distance of Order, Manhattan 
Distance, Chebyshev Distance, Bray Curtis Distance, Angular 
Separation, Correlation Coefficient, Entropy, Kullback - 
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito 
Divergence and Total Variation. Next, after the features are 
extracted, the data mining module will utilise the decision tree 
and Boosting (Ada-BoostM1) which is implemented in WEKA 
to classify the input file. Finally, the comparison and correlation 
module will find the similarity between blocks and classify 
whether the input file is malicious or benign. Kim, Kang, & Im 
[22] stated that it is possible to classify malware by dividing the 
codes into smaller segment and analyse the divided code. There 
are four modules which are the disassembler, block divider, 
major block selector, and similarity calculator. The 
disassembler will change the input file into a set of instructions 
while the block divider will separate the instructions from the 
disassembler into many blocks using the retn instruction as the 
end of a block. Next, the major block selector will scan all 
blocks for function call instructions which use the call or jump 
instruction. Finally, the similarity calculator will compare 
dataset from a database with the major block from the major 
block selector section. 

Instruction frequency-based malware classification utilizes 
information from both malware and legit files [22]. The 
classification is made by identifying the frequency of 
instructions from a set of instructions that are malicious. This 
allows the classifier to differentiate between a malware and a 
legit file. Bilar [23] proposed using opcodes to classify malware 
where a dataset is created by using PEiD to collect PE header 
information of the malware and legit file. Next, a list of opcodes 
was taken from the samples and added along with the list in 
Wikipedia to a total of 398 IA-32 opcodes. From the extraction 
of opcodes from the samples, the result of extraction was 
compared to the list of opcodes and broken down into the most 
frequent opcodes for malware. Finally, from the list of most 
frequent opcodes, statistics were made to obtain a result that 
shows the difference between malware and clean files. Han, 
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Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 
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For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  
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Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32 

Kang, & Im [24] added to the approach of using instruction 
frequency to classify malwares. The approach stated that the 
instructions of a specific malware are made from opcodes like 
'push,' 'mov,' 'sub' and more. The approach proposed a design 
to utilize a simple binary comparison method using instruction 
frequencies. First, the method will compare a malware with a 
normal program and map each instruction that is like each other. 
Then, the instructions from two malware of similar family are 
compared and mapped to show the instruction frequency 
difference. From the result of comparison, it will be easy and 
fast to classify a new input, whereby, if the new input has low 
instruction frequency difference, it will be categorized under 
the same family as the malware it is used to compare with. 

  
III. METHODOLOGY AND IMPLEMENTATION  

The methodology of the overall analysis process illustrated 
in Figure 3 is started by performing analysis on the file followed 
by classification process. The analysis approach is divided into 
three parts which are static analysis, dynamic analysis and 
hybrid analysis as depicted in Figure 3 while the classification 
is a standalone process. 

 

 

Fig. 3. Proposed Malware Analysis and Classification Tool Approach 

For the implementation, an application development 
environment setup is created properly as it plays an important 
role in the implementation phase. The lack in development 
environment setup may lead to unexpected errors or events 
which could affect the implementation result.  The architecture 
of the setup is illustrated in Figure 4.  

 
Fig. 4. Malware Analysis and Classification System Architecture 

Based on Figure 4, there are 4 modules involved in the 
implementation of the application which are hashing of sample 
using Message Digest and SHA, performing analysis, 
classification and report preparation. Firstly, to be able to fully 
utilize the tool, the user will need to provide a file to be analyzed 
by the tool. The objective of this process is to ensure that there 
is something provided for the tool to carry out its functions. 
Once the user has selected a file, the user is then allowed to 
interact with the user interface of the tool where four other 
modules which are the static analysis, dynamic analysis, hybrid 
analysis and classification modules. 
 
A. Implementation of Static Analysis 

For static analysis, this research analyses the file via three 
methods which is printable string extraction, portable 
executable (PE) header information extraction and YARA rules 
checking.  

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

 
B. Implementation of Dynamic Analysis 

For dynamic analysis, this research analyses the file by 
logging and visualizing the application programming interface 
(API) calls and checking on specific registry entries. 

a) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 
hook into the target application. Next, the application will copy 

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 33 

the DLL file to SysWOW64 directory and proceed with DLL 
injection into the target application. After injecting, API calls 
related to files and registry will be tracked and logged. 
However, if the file is an executable (EXE) file, the process will 
launch the EXE file and immediately place a debugger hook 
onto the newly launched EXE file. API calls related to files and 
registry will be tracked and logged. Finally, upon completion 
of API call logging, the log will be used to generate a graph to 
visualize the API call made by the DLL/EXE file. 

b) Registry Entry Check: The first step of this process is to 
read the selected registry entry. After reading the selected 
registry entry, the application will make a backup of the said 
registry entry for comparison purposes after executing the 
malware. Once the malware has finished running, the selected 
registry will be read once more, and the initial registry will be 
loaded and compared to the current registry to find the 
differences that the malware potentially has changed. The 
registry will be displayed. 

 
C. Implementation of Hybrid Analysis 

For hybrid analysis, this research combines the methods from 
both static and dynamic analysis to analyze the file. 

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
as well as the section data. For the import information, the DLL, 
the imported function name and the imported function address 
will be displayed. 

d) API Call Logging and Visualization: The first step of this 
process is to identify the type of file that has been loaded. If the 
file is a dynamic link library (DLL) file, the process will launch 
the target application which will host the DLL file. In this 
research, the target application is putty.exe. Once the target 
application is executed, the application will place a debugger 

hook into the target application. Next, the application will copy 
the DLL file to SysWOW64 directory and proceed with DLL 
injection into the target application. After injecting, API calls 
related to files and registry will be tracked and logged. 
However, if the file is an executable (EXE) file, the process will 
launch the EXE file and immediately place a debugger hook 
onto the newly launched EXE file. API calls related to files and 
registry will be tracked and logged. Finally, upon completion 
of API call logging, the log will be used to generate a graph to 
visualize the API call made by the DLL/EXE file. 

e) Registry Entry Check: The first step of this process is to 
read the selected registry entry. After reading the selected 
registry entry, the application will make a backup of the said 
registry entry for comparison purposes after executing the 
malware. Once the malware has finished running, the selected 
registry will be read once more, and the initial registry will be 
loaded and compared to the current registry to find the 
differences that the malware potentially has changed. The 
registry will be displayed. 

 
D. Implementation of Classification 

For classification, this research performs classification by 
instruction frequency. 

a) Instruction Extraction: The first step of this process is to 
create an objfile of the malware file. This can be done by using 
the objdump utility and the output is the file information, 
address, opcode and assembly instruction. Once the objfile is 
created, the assembly instruction is extracted with the 
utilization of sed and cut utilities. The extracted instructions are 
kept for instruction calculation and classification. 

b) Instruction Calculation and Classification: The first step 
of this process is to load the previously saved file which 
contains the extracted instructions. Once this has been done, the 
application will iterate through the file and count the frequency 
of each individual instruction available as well as the total 
instruction. With the individual instruction frequency ready at 
hand, the application will divide each of the 8 instructions (mov, 
add, push, pop, call, jmp, xor, cmp) over the total instruction to 
gain the percentage of the instructions. Finally, this percentage 
will be used to perform classification. 

 
IV. RESULT  

The analysis of the four main processes which are static 
analysis process, dynamic analysis process, hybrid analysis 
process and classification process is performed in an emulated 
environment that runs a Microsoft Windows 7 (64-bit). The 
Conficker worm provided by MyCERT from CyberSecurity 
Malaysia is used in this research to generate the results. 

A. Static Analysis Module 
In static analysis module, there are 3 routines which are 

processed. 
a) YARA Rule Check: PEiD, packer and anti-virtual 

machine/anti-debugging rules are loaded, and the malware is 
checked against the rules. The details of the matches will be 
displayed as depicted in Figure 4. 
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the DLL file to SysWOW64 directory and proceed with DLL 
injection into the target application. After injecting, API calls 
related to files and registry will be tracked and logged. 
However, if the file is an executable (EXE) file, the process will 
launch the EXE file and immediately place a debugger hook 
onto the newly launched EXE file. API calls related to files and 
registry will be tracked and logged. Finally, upon completion 
of API call logging, the log will be used to generate a graph to 
visualize the API call made by the DLL/EXE file. 

b) Registry Entry Check: The first step of this process is to 
read the selected registry entry. After reading the selected 
registry entry, the application will make a backup of the said 
registry entry for comparison purposes after executing the 
malware. Once the malware has finished running, the selected 
registry will be read once more, and the initial registry will be 
loaded and compared to the current registry to find the 
differences that the malware potentially has changed. The 
registry will be displayed. 

 
C. Implementation of Hybrid Analysis 

For hybrid analysis, this research combines the methods from 
both static and dynamic analysis to analyze the file. 

a) YARA Rules Check: The first step of this process is to load 
PEiD rules, packer rules and anti-virtual machine/anti 
debugging rules. Upon completion of loading the rules, the file 
will be tested against these rules to find any matching array of 
bytes, string or reference. The PEiD rules are used to determine 
if the file has any PEiD recognizable packers. In addition, the 
packer rules are used to further determine if the file has been 
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if 
the file has any anti-virtual machine/anti debugging properties 
that may disrupt further analysis. All matching rules will be 
displayed. 

b) String Extraction: The first step of this process is to load 
the selected file into memory. Once the file is loaded, a regular 
expression pattern is used to search for all printable UTF-16 
strings from within the region of memory of the file. Next, all 
strings that exist will be appended and displayed. 

c) PE Header Information Extraction: The first step of this 
process is to load the selected file into memory. Once the file is 
loaded, extraction of the section information, header 
information and import information are executed. After all that, 
all information extracted will be displayed in a report. The 
information section will display information such as the section 
name, virtual address of the section, virtual size of the section, 
and the size of raw data. The header information will dis-play 
the image base, entry point address, and the number of sections 
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instruction. With the individual instruction frequency ready at 
hand, the application will divide each of the 8 instructions (mov, 
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analysis process, dynamic analysis process, hybrid analysis 
process and classification process is performed in an emulated 
environment that runs a Microsoft Windows 7 (64-bit). The 
Conficker worm provided by MyCERT from CyberSecurity 
Malaysia is used in this research to generate the results. 

A. Static Analysis Module 
In static analysis module, there are 3 routines which are 
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a) YARA Rule Check: PEiD, packer and anti-virtual 

machine/anti-debugging rules are loaded, and the malware is 
checked against the rules. The details of the matches will be 
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b) String Extraction: The malware is loaded into the memory 
and a regular expression pattern is used to display all printable 
strings found within the malware. The list of printable strings 
will be displayed as depicted in Figure 5. 

c) PE Header Information Extraction: 
The malware is loaded into the memory and the extraction of 

the section information, header information and import 
information are executed. Result from the information 
extraction is displayed as depicted in Figure 5. 

 

 
Fig. 5. Static Analysis Result 
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In dynamic analysis module, there are 2 routines which are 
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a) API Call Logging and Visualization: The malware is 

executed and the graph for the API call is generated as shown 
in Figure 6. 
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b) Registry Entry Check: The registry changes that are made 
by the malware that has been executed towards specific registry 
is displayed in Figure 7. 
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loaded into the memory and the extraction of the section 
information, header information and import information are 
executed. Result from the information extraction is displayed 
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d) API Call Logging and Visualization: The malware is 
executed and the graph for the API call is generated as shown 
in Figure 9. 
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e) Registry Entry Check: The registry changes that are 
made by the malware that has been executed towards specific 
registry is displayed in Figure 7. 
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and a regular expression pattern is used to display all printable 
strings found within the malware. The list of printable strings 
will be displayed as depicted in Figure 5. 

c) PE Header Information Extraction: 
The malware is loaded into the memory and the extraction of 

the section information, header information and import 
information are executed. Result from the information 
extraction is displayed as depicted in Figure 5. 
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Fig. 8. Dynamic Analysis Result 

d) API Call Logging and Visualization: The malware is 
executed and the graph for the API call is generated as shown 
in Figure 9. 

 

Fig. 9. API Call Visualization Result 

e) Registry Entry Check: The registry changes that are 
made by the malware that has been executed towards specific 
registry is displayed in Figure 7. 

 
D. Classification Module 

In classification module, there are 2 routines which are 
processed. 

a) Instruction Extraction: The objfile of the malware file is 
created by using the objdump utility. The assembly instruction 
is extracted from the objfile with the utilization of sed and cut 
utilities. This list of assembly instruction will be used for the 
calculation and classification process. 

b) Instruction Calculation and Classification: The file which 
contains the extracted instructions is loaded and will be iterated 
to count the frequency of each individual instruction available 
as well as the total amount of instructions. With the individual 
instruction frequency ready at hand, 8 instructions (mov, add, 
push, pop, call, jmp, xor, cmp) will be divided over the total 
instruction to gain the percentage of the instructions. Finally, 
this percentage will be used to perform classification. The result 
of the classification is displayed as depicted in Figure 10. 

 

  

Fig. 10. Classification Result 

V. CONCLUSION  
In this paper, the researchers have utilized static and dynamic 

malware analysis in order to identify the behavior of the 
malware. The research combines both static and dynamic 
malware analysis techniques to gain more de-tails 
understanding on how the malware behave and the type of API 
called in the Windows environment. The output of the analysis 
is used to visualize the API call made by the malware. This 
research is a preliminary worked for automated malware 
analysis. The finding will contribute ideas in finding an 
effective method to automate malware analysis. 
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