
Digital Jawi Palaeography: Studies from the Perspective of Computer Science

33ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 31

A. Malware Analysis Techniques
Malware analysis is a technique which malware analysts use

to identify the functions of a malware. There are three types of
analysis technique which includes, static analysis, dynamic
analysis and dynamic analysis. Static analysis is the technique
of investigating an application without executing it [12]. This is
made possible through program analyzers, debuggers and
disassemblers. As for dynamic analysis, it is referred to as
analyzing the activities performed by a program while it is
being executed in a safe environment [12]. Hybrid analysis is
the combination of both static and dynamic analysis.

Static analysis can be divided into two approaches which are
basic and advanced static analysis. Basic static analysis
comprises of analyzing the executable file without looking at
the real codes which includes antivirus scanning, hashing for
fingerprinting, finding strings that may bring significant
meaning, checking if the file is packed, performing YARA rule
checking and checking the imported linked libraries and
functions [13].

Advanced static analysis comprises of figuring out the
malware's codes to find out what the program does by reversing
the application using a disassembler. Be that as it may,
advanced static analysis requires in-depth knowledge of
disassembly, code constructs, Windows API, Registry,
Networking API and kernels as well as performing reverse
engineering using IDA or other disassemblers [14]. With more
experience, advanced static analysis will be easier.

Dynamic analysis can be divided into two approaches which
are basic and advanced dynamic analysis. Usually, dynamic
analysis is done after the static analysis has been done on the
application. Basic dynamic analysis is the act of running the
malware and watching its action on the system keeping in mind
that the end goal is to clean the system, deliver useful trace, or
both. Nonetheless, before running a malware, it is required to
set up a safe environment to analyses the running malware
without danger of harming the host system [15]. Furthermore,
the basic dynamic analysis includes using a sandbox, running
the malware, monitoring the process with Process Monitor and
Process Explorer, comparing registry snapshots for change in
the registry and packet sniffing using Wireshark to determine
traffic flow [16].

On the other hand, advanced dynamic analysis utilizes a
debugger to look at the code of a running malware. A debugger
is a type of application utilized to perform checks or to study
the execution of another program. Advanced dynamic analysis
methods make it easier to extract information regarding an
executable as the data is gained during runtime. This is to
ensure any obfuscation of code has been undone and is in plain
assembly for easier readability. Advanced dynamic analysis
requires knowledge of debugging, using a debugger and having
the knowledge of kernels. Furthermore, there are different types
of debugger which are source-level debugger and assembly
debugger and two modes for debugging which are kernel-mode
and user-mode debugging [17].

B. Malware Classification Techniques

Malware classification is a method to categorize malware
based on different aspects such as how they get executed, how
they spread, and/or what they do. There are many ways to

classify malware such as using the machine learning engine,
comparing the binary content and frequency of instruction.

Classification with machine learning utilizes an arrangement
of pre-characterized samples to create a model which can be
utilized for future classification. The classifier will learn with
the use of training samples to create a classifier model [18].
Perdisci, Lanzi, & Lee [19] proposed an extension of this
method, where malwares are to be unpacked before
classification. The extension’s method was to have a classifier
to identify if the executable is packed or not, having a universal
unpacked and a classifier to differentiate if the code is malicious
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine
learning in their proposed system to classify malware base on
scalable clustering and classification, incremental analysis of
malware behaviour and extensive evaluation with real malware.

Binary content comparison for malware classification uses 4
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The
methods are generating block of codes, extracting features from
the block, data mining and comparison and correlation. Firstly,
the block generator module separates the byte-level code of a
given file into blocks. Then the feature extraction module will
use a total of 13 different features which are Simpson’s Index,
Canberra Distance, Minkowski Distance of Order, Manhattan
Distance, Chebyshev Distance, Bray Curtis Distance, Angular
Separation, Correlation Coefficient, Entropy, Kullback -
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito
Divergence and Total Variation. Next, after the features are
extracted, the data mining module will utilise the decision tree
and Boosting (Ada-BoostM1) which is implemented in WEKA
to classify the input file. Finally, the comparison and correlation
module will find the similarity between blocks and classify
whether the input file is malicious or benign. Kim, Kang, & Im
[22] stated that it is possible to classify malware by dividing the
codes into smaller segment and analyse the divided code. There
are four modules which are the disassembler, block divider,
major block selector, and similarity calculator. The
disassembler will change the input file into a set of instructions
while the block divider will separate the instructions from the
disassembler into many blocks using the retn instruction as the
end of a block. Next, the major block selector will scan all
blocks for function call instructions which use the call or jump
instruction. Finally, the similarity calculator will compare
dataset from a database with the major block from the major
block selector section.

Instruction frequency-based malware classification utilizes
information from both malware and legit files [22]. The
classification is made by identifying the frequency of
instructions from a set of instructions that are malicious. This
allows the classifier to differentiate between a malware and a
legit file. Bilar [23] proposed using opcodes to classify malware
where a dataset is created by using PEiD to collect PE header
information of the malware and legit file. Next, a list of opcodes
was taken from the samples and added along with the list in
Wikipedia to a total of 398 IA-32 opcodes. From the extraction
of opcodes from the samples, the result of extraction was
compared to the list of opcodes and broken down into the most
frequent opcodes for malware. Finally, from the list of most
frequent opcodes, statistics were made to obtain a result that
shows the difference between malware and clean files. Han,

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 30

An Automated Tool for Malware Analysis and
Classification

Siti Rahayu Selamat and Ng Thiam Tet2

Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka

Email: 1sitirahayu@utem.edu.my, 2ngthiamtet@gmail.com

Abstract— Malware attacks are still increasing up till today. This
situation will cause many unwanted disturbances in the network or
system that is being attacked by malware. Furthermore, malware is
hard to identify due to the huge amount of samples and its unknown
activities. Therefore, an automated tool is needed to analyze the
malware samples and identify their activities. Due to that, a malware
analysis will be integrated within the tool to be able to address the
activities of the malware. The analysis method used is the hybrid
analysis technique which, it combined both static and dynamic
analysis techniques. Static analysis technique is a technique where
malware is dissected, and reverse engineered to gain more information
without executing the malware. Contrary to static analysis, dynamic
analysis will execute the malware in a secure environment to further
observe the behavior and activities carried out by the malware. In
addition, a classification method via an application programming
interface (API) calls made by the malware is implemented within the
tool that capable to differentiate between a normal program and
malware. The development of the automated tool is used Java and
Python language. The result will be determined by the ability of
logging and identifying the malware activities via an API call, and the
ability to classify and differentiate between a malware and a normal
program. In conclusion, the integration of malware analysis techniques
and classification techniques will help provide more information to
identify and differentiate a malware from normal programs.

Index Terms— Malware, Malware Analysis, Malware
Classification, Tool.

I. INTRODUCTION

alicious software also known as malware is utilized or
made by attackers to disturb PC activity, gain access to
sensitive information or access private computer systems

unauthorized [1]. There are multiple types of malware
throughout the history of the Internet that has been known to
mankind, some of which includes the viruses, worms, Trojans,
rootkits, ransomwares, key loggers and graywares.

According to Cohen [2], the definition of a virus is a program
that can infect other programs by hijacking to include a
potentially evolved duplicate of itself. Worm, as defined by
Weaver, Paxson, Staniford, & Cunningham [3] is a program
that abuses security exploits in widely used services to self-
propagate through the network. Meanwhile, Trojan horse as
defined by Windows [4] is a program that seems like a legit
program, however it carries out some illegal action when it is
run. According to Landi [5], rootkits are programs and codes
which are able to be undetected either permanently or
consistently on a PC. On the other hand, Brewer [6] defines
ransomware is a type of malware using cryptography to encrypt
files on the hard disk and prevents access to it while some also
blackmails the victim by threatening to spread victim’s personal
information unless the ransom is paid. Ahmed, Maarof, Hassan,

& Abshir [7] describes a key logger as a malware that records
the client's keystroke on the keyboard. Fortinet [8] defined
grayware as a term used for a variety of programs that are
installed on a client's PC to track or potentially send certain data
back to some other source.

Over the last decade, the number of malware has increased
tremendously starting from 2007 all the way until today [9]. The
increase in the amount of new malware from Q4 of year 2015
to Q3 of year 2017 and from Q4 of year 2016 to Q3 of year
2018 are represented in Figure 1 and Figure 2 respectively.
Based on these figures, malware attacks are increased rapidly.
Thus, there is a need to identify and analyze the malware
activities or behavior in order to identify the malware and their
attacks.

Fig. 1. Statistic Report for Number of New Malware through Q4, 2015 to Q3,
2017 [11]

Fig. 2. Statistic Report for Number of New Malware through Q4, 2016 to Q3,
2018 [11]

II. RELATED WORKS

In this section, the malware analysis techniques and
classification techniques are discussed.

M

34

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 31

A. Malware Analysis Techniques
Malware analysis is a technique which malware analysts use

to identify the functions of a malware. There are three types of
analysis technique which includes, static analysis, dynamic
analysis and dynamic analysis. Static analysis is the technique
of investigating an application without executing it [12]. This is
made possible through program analyzers, debuggers and
disassemblers. As for dynamic analysis, it is referred to as
analyzing the activities performed by a program while it is
being executed in a safe environment [12]. Hybrid analysis is
the combination of both static and dynamic analysis.

Static analysis can be divided into two approaches which are
basic and advanced static analysis. Basic static analysis
comprises of analyzing the executable file without looking at
the real codes which includes antivirus scanning, hashing for
fingerprinting, finding strings that may bring significant
meaning, checking if the file is packed, performing YARA rule
checking and checking the imported linked libraries and
functions [13].

Advanced static analysis comprises of figuring out the
malware's codes to find out what the program does by reversing
the application using a disassembler. Be that as it may,
advanced static analysis requires in-depth knowledge of
disassembly, code constructs, Windows API, Registry,
Networking API and kernels as well as performing reverse
engineering using IDA or other disassemblers [14]. With more
experience, advanced static analysis will be easier.

Dynamic analysis can be divided into two approaches which
are basic and advanced dynamic analysis. Usually, dynamic
analysis is done after the static analysis has been done on the
application. Basic dynamic analysis is the act of running the
malware and watching its action on the system keeping in mind
that the end goal is to clean the system, deliver useful trace, or
both. Nonetheless, before running a malware, it is required to
set up a safe environment to analyses the running malware
without danger of harming the host system [15]. Furthermore,
the basic dynamic analysis includes using a sandbox, running
the malware, monitoring the process with Process Monitor and
Process Explorer, comparing registry snapshots for change in
the registry and packet sniffing using Wireshark to determine
traffic flow [16].

On the other hand, advanced dynamic analysis utilizes a
debugger to look at the code of a running malware. A debugger
is a type of application utilized to perform checks or to study
the execution of another program. Advanced dynamic analysis
methods make it easier to extract information regarding an
executable as the data is gained during runtime. This is to
ensure any obfuscation of code has been undone and is in plain
assembly for easier readability. Advanced dynamic analysis
requires knowledge of debugging, using a debugger and having
the knowledge of kernels. Furthermore, there are different types
of debugger which are source-level debugger and assembly
debugger and two modes for debugging which are kernel-mode
and user-mode debugging [17].

B. Malware Classification Techniques

Malware classification is a method to categorize malware
based on different aspects such as how they get executed, how
they spread, and/or what they do. There are many ways to

classify malware such as using the machine learning engine,
comparing the binary content and frequency of instruction.

Classification with machine learning utilizes an arrangement
of pre-characterized samples to create a model which can be
utilized for future classification. The classifier will learn with
the use of training samples to create a classifier model [18].
Perdisci, Lanzi, & Lee [19] proposed an extension of this
method, where malwares are to be unpacked before
classification. The extension’s method was to have a classifier
to identify if the executable is packed or not, having a universal
unpacked and a classifier to differentiate if the code is malicious
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine
learning in their proposed system to classify malware base on
scalable clustering and classification, incremental analysis of
malware behaviour and extensive evaluation with real malware.

Binary content comparison for malware classification uses 4
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The
methods are generating block of codes, extracting features from
the block, data mining and comparison and correlation. Firstly,
the block generator module separates the byte-level code of a
given file into blocks. Then the feature extraction module will
use a total of 13 different features which are Simpson’s Index,
Canberra Distance, Minkowski Distance of Order, Manhattan
Distance, Chebyshev Distance, Bray Curtis Distance, Angular
Separation, Correlation Coefficient, Entropy, Kullback -
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito
Divergence and Total Variation. Next, after the features are
extracted, the data mining module will utilise the decision tree
and Boosting (Ada-BoostM1) which is implemented in WEKA
to classify the input file. Finally, the comparison and correlation
module will find the similarity between blocks and classify
whether the input file is malicious or benign. Kim, Kang, & Im
[22] stated that it is possible to classify malware by dividing the
codes into smaller segment and analyse the divided code. There
are four modules which are the disassembler, block divider,
major block selector, and similarity calculator. The
disassembler will change the input file into a set of instructions
while the block divider will separate the instructions from the
disassembler into many blocks using the retn instruction as the
end of a block. Next, the major block selector will scan all
blocks for function call instructions which use the call or jump
instruction. Finally, the similarity calculator will compare
dataset from a database with the major block from the major
block selector section.

Instruction frequency-based malware classification utilizes
information from both malware and legit files [22]. The
classification is made by identifying the frequency of
instructions from a set of instructions that are malicious. This
allows the classifier to differentiate between a malware and a
legit file. Bilar [23] proposed using opcodes to classify malware
where a dataset is created by using PEiD to collect PE header
information of the malware and legit file. Next, a list of opcodes
was taken from the samples and added along with the list in
Wikipedia to a total of 398 IA-32 opcodes. From the extraction
of opcodes from the samples, the result of extraction was
compared to the list of opcodes and broken down into the most
frequent opcodes for malware. Finally, from the list of most
frequent opcodes, statistics were made to obtain a result that
shows the difference between malware and clean files. Han,

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 31

A. Malware Analysis Techniques
Malware analysis is a technique which malware analysts use

to identify the functions of a malware. There are three types of
analysis technique which includes, static analysis, dynamic
analysis and dynamic analysis. Static analysis is the technique
of investigating an application without executing it [12]. This is
made possible through program analyzers, debuggers and
disassemblers. As for dynamic analysis, it is referred to as
analyzing the activities performed by a program while it is
being executed in a safe environment [12]. Hybrid analysis is
the combination of both static and dynamic analysis.

Static analysis can be divided into two approaches which are
basic and advanced static analysis. Basic static analysis
comprises of analyzing the executable file without looking at
the real codes which includes antivirus scanning, hashing for
fingerprinting, finding strings that may bring significant
meaning, checking if the file is packed, performing YARA rule
checking and checking the imported linked libraries and
functions [13].

Advanced static analysis comprises of figuring out the
malware's codes to find out what the program does by reversing
the application using a disassembler. Be that as it may,
advanced static analysis requires in-depth knowledge of
disassembly, code constructs, Windows API, Registry,
Networking API and kernels as well as performing reverse
engineering using IDA or other disassemblers [14]. With more
experience, advanced static analysis will be easier.

Dynamic analysis can be divided into two approaches which
are basic and advanced dynamic analysis. Usually, dynamic
analysis is done after the static analysis has been done on the
application. Basic dynamic analysis is the act of running the
malware and watching its action on the system keeping in mind
that the end goal is to clean the system, deliver useful trace, or
both. Nonetheless, before running a malware, it is required to
set up a safe environment to analyses the running malware
without danger of harming the host system [15]. Furthermore,
the basic dynamic analysis includes using a sandbox, running
the malware, monitoring the process with Process Monitor and
Process Explorer, comparing registry snapshots for change in
the registry and packet sniffing using Wireshark to determine
traffic flow [16].

On the other hand, advanced dynamic analysis utilizes a
debugger to look at the code of a running malware. A debugger
is a type of application utilized to perform checks or to study
the execution of another program. Advanced dynamic analysis
methods make it easier to extract information regarding an
executable as the data is gained during runtime. This is to
ensure any obfuscation of code has been undone and is in plain
assembly for easier readability. Advanced dynamic analysis
requires knowledge of debugging, using a debugger and having
the knowledge of kernels. Furthermore, there are different types
of debugger which are source-level debugger and assembly
debugger and two modes for debugging which are kernel-mode
and user-mode debugging [17].

B. Malware Classification Techniques

Malware classification is a method to categorize malware
based on different aspects such as how they get executed, how
they spread, and/or what they do. There are many ways to

classify malware such as using the machine learning engine,
comparing the binary content and frequency of instruction.

Classification with machine learning utilizes an arrangement
of pre-characterized samples to create a model which can be
utilized for future classification. The classifier will learn with
the use of training samples to create a classifier model [18].
Perdisci, Lanzi, & Lee [19] proposed an extension of this
method, where malwares are to be unpacked before
classification. The extension’s method was to have a classifier
to identify if the executable is packed or not, having a universal
unpacked and a classifier to differentiate if the code is malicious
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine
learning in their proposed system to classify malware base on
scalable clustering and classification, incremental analysis of
malware behaviour and extensive evaluation with real malware.

Binary content comparison for malware classification uses 4
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The
methods are generating block of codes, extracting features from
the block, data mining and comparison and correlation. Firstly,
the block generator module separates the byte-level code of a
given file into blocks. Then the feature extraction module will
use a total of 13 different features which are Simpson’s Index,
Canberra Distance, Minkowski Distance of Order, Manhattan
Distance, Chebyshev Distance, Bray Curtis Distance, Angular
Separation, Correlation Coefficient, Entropy, Kullback -
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito
Divergence and Total Variation. Next, after the features are
extracted, the data mining module will utilise the decision tree
and Boosting (Ada-BoostM1) which is implemented in WEKA
to classify the input file. Finally, the comparison and correlation
module will find the similarity between blocks and classify
whether the input file is malicious or benign. Kim, Kang, & Im
[22] stated that it is possible to classify malware by dividing the
codes into smaller segment and analyse the divided code. There
are four modules which are the disassembler, block divider,
major block selector, and similarity calculator. The
disassembler will change the input file into a set of instructions
while the block divider will separate the instructions from the
disassembler into many blocks using the retn instruction as the
end of a block. Next, the major block selector will scan all
blocks for function call instructions which use the call or jump
instruction. Finally, the similarity calculator will compare
dataset from a database with the major block from the major
block selector section.

Instruction frequency-based malware classification utilizes
information from both malware and legit files [22]. The
classification is made by identifying the frequency of
instructions from a set of instructions that are malicious. This
allows the classifier to differentiate between a malware and a
legit file. Bilar [23] proposed using opcodes to classify malware
where a dataset is created by using PEiD to collect PE header
information of the malware and legit file. Next, a list of opcodes
was taken from the samples and added along with the list in
Wikipedia to a total of 398 IA-32 opcodes. From the extraction
of opcodes from the samples, the result of extraction was
compared to the list of opcodes and broken down into the most
frequent opcodes for malware. Finally, from the list of most
frequent opcodes, statistics were made to obtain a result that
shows the difference between malware and clean files. Han,

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 31

A. Malware Analysis Techniques
Malware analysis is a technique which malware analysts use

to identify the functions of a malware. There are three types of
analysis technique which includes, static analysis, dynamic
analysis and dynamic analysis. Static analysis is the technique
of investigating an application without executing it [12]. This is
made possible through program analyzers, debuggers and
disassemblers. As for dynamic analysis, it is referred to as
analyzing the activities performed by a program while it is
being executed in a safe environment [12]. Hybrid analysis is
the combination of both static and dynamic analysis.

Static analysis can be divided into two approaches which are
basic and advanced static analysis. Basic static analysis
comprises of analyzing the executable file without looking at
the real codes which includes antivirus scanning, hashing for
fingerprinting, finding strings that may bring significant
meaning, checking if the file is packed, performing YARA rule
checking and checking the imported linked libraries and
functions [13].

Advanced static analysis comprises of figuring out the
malware's codes to find out what the program does by reversing
the application using a disassembler. Be that as it may,
advanced static analysis requires in-depth knowledge of
disassembly, code constructs, Windows API, Registry,
Networking API and kernels as well as performing reverse
engineering using IDA or other disassemblers [14]. With more
experience, advanced static analysis will be easier.

Dynamic analysis can be divided into two approaches which
are basic and advanced dynamic analysis. Usually, dynamic
analysis is done after the static analysis has been done on the
application. Basic dynamic analysis is the act of running the
malware and watching its action on the system keeping in mind
that the end goal is to clean the system, deliver useful trace, or
both. Nonetheless, before running a malware, it is required to
set up a safe environment to analyses the running malware
without danger of harming the host system [15]. Furthermore,
the basic dynamic analysis includes using a sandbox, running
the malware, monitoring the process with Process Monitor and
Process Explorer, comparing registry snapshots for change in
the registry and packet sniffing using Wireshark to determine
traffic flow [16].

On the other hand, advanced dynamic analysis utilizes a
debugger to look at the code of a running malware. A debugger
is a type of application utilized to perform checks or to study
the execution of another program. Advanced dynamic analysis
methods make it easier to extract information regarding an
executable as the data is gained during runtime. This is to
ensure any obfuscation of code has been undone and is in plain
assembly for easier readability. Advanced dynamic analysis
requires knowledge of debugging, using a debugger and having
the knowledge of kernels. Furthermore, there are different types
of debugger which are source-level debugger and assembly
debugger and two modes for debugging which are kernel-mode
and user-mode debugging [17].

B. Malware Classification Techniques

Malware classification is a method to categorize malware
based on different aspects such as how they get executed, how
they spread, and/or what they do. There are many ways to

classify malware such as using the machine learning engine,
comparing the binary content and frequency of instruction.

Classification with machine learning utilizes an arrangement
of pre-characterized samples to create a model which can be
utilized for future classification. The classifier will learn with
the use of training samples to create a classifier model [18].
Perdisci, Lanzi, & Lee [19] proposed an extension of this
method, where malwares are to be unpacked before
classification. The extension’s method was to have a classifier
to identify if the executable is packed or not, having a universal
unpacked and a classifier to differentiate if the code is malicious
or not. Rieck, Trinius, Willems, & Holz [20] utilized machine
learning in their proposed system to classify malware base on
scalable clustering and classification, incremental analysis of
malware behaviour and extensive evaluation with real malware.

Binary content comparison for malware classification uses 4
methods as mentioned by Tabish, Shafiq, & Farooq [21]. The
methods are generating block of codes, extracting features from
the block, data mining and comparison and correlation. Firstly,
the block generator module separates the byte-level code of a
given file into blocks. Then the feature extraction module will
use a total of 13 different features which are Simpson’s Index,
Canberra Distance, Minkowski Distance of Order, Manhattan
Distance, Chebyshev Distance, Bray Curtis Distance, Angular
Separation, Correlation Coefficient, Entropy, Kullback -
Leibler Divergence, Jensen-Shannon Divergence, Itakura-Saito
Divergence and Total Variation. Next, after the features are
extracted, the data mining module will utilise the decision tree
and Boosting (Ada-BoostM1) which is implemented in WEKA
to classify the input file. Finally, the comparison and correlation
module will find the similarity between blocks and classify
whether the input file is malicious or benign. Kim, Kang, & Im
[22] stated that it is possible to classify malware by dividing the
codes into smaller segment and analyse the divided code. There
are four modules which are the disassembler, block divider,
major block selector, and similarity calculator. The
disassembler will change the input file into a set of instructions
while the block divider will separate the instructions from the
disassembler into many blocks using the retn instruction as the
end of a block. Next, the major block selector will scan all
blocks for function call instructions which use the call or jump
instruction. Finally, the similarity calculator will compare
dataset from a database with the major block from the major
block selector section.

Instruction frequency-based malware classification utilizes
information from both malware and legit files [22]. The
classification is made by identifying the frequency of
instructions from a set of instructions that are malicious. This
allows the classifier to differentiate between a malware and a
legit file. Bilar [23] proposed using opcodes to classify malware
where a dataset is created by using PEiD to collect PE header
information of the malware and legit file. Next, a list of opcodes
was taken from the samples and added along with the list in
Wikipedia to a total of 398 IA-32 opcodes. From the extraction
of opcodes from the samples, the result of extraction was
compared to the list of opcodes and broken down into the most
frequent opcodes for malware. Finally, from the list of most
frequent opcodes, statistics were made to obtain a result that
shows the difference between malware and clean files. Han,

Digital Jawi Palaeography: Studies from the Perspective of Computer Science

35ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 32

Kang, & Im [24] added to the approach of using instruction
frequency to classify malwares. The approach stated that the
instructions of a specific malware are made from opcodes like
'push,' 'mov,' 'sub' and more. The approach proposed a design
to utilize a simple binary comparison method using instruction
frequencies. First, the method will compare a malware with a
normal program and map each instruction that is like each other.
Then, the instructions from two malware of similar family are
compared and mapped to show the instruction frequency
difference. From the result of comparison, it will be easy and
fast to classify a new input, whereby, if the new input has low
instruction frequency difference, it will be categorized under
the same family as the malware it is used to compare with.

III. METHODOLOGY AND IMPLEMENTATION

The methodology of the overall analysis process illustrated
in Figure 3 is started by performing analysis on the file followed
by classification process. The analysis approach is divided into
three parts which are static analysis, dynamic analysis and
hybrid analysis as depicted in Figure 3 while the classification
is a standalone process.

Fig. 3. Proposed Malware Analysis and Classification Tool Approach

For the implementation, an application development
environment setup is created properly as it plays an important
role in the implementation phase. The lack in development
environment setup may lead to unexpected errors or events
which could affect the implementation result. The architecture
of the setup is illustrated in Figure 4.

Fig. 4. Malware Analysis and Classification System Architecture

Based on Figure 4, there are 4 modules involved in the
implementation of the application which are hashing of sample
using Message Digest and SHA, performing analysis,
classification and report preparation. Firstly, to be able to fully
utilize the tool, the user will need to provide a file to be analyzed
by the tool. The objective of this process is to ensure that there
is something provided for the tool to carry out its functions.
Once the user has selected a file, the user is then allowed to
interact with the user interface of the tool where four other
modules which are the static analysis, dynamic analysis, hybrid
analysis and classification modules.

A. Implementation of Static Analysis

For static analysis, this research analyses the file via three
methods which is printable string extraction, portable
executable (PE) header information extraction and YARA rules
checking.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

B. Implementation of Dynamic Analysis

For dynamic analysis, this research analyses the file by
logging and visualizing the application programming interface
(API) calls and checking on specific registry entries.

a) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger
hook into the target application. Next, the application will copy

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 33

the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

b) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

C. Implementation of Hybrid Analysis

For hybrid analysis, this research combines the methods from
both static and dynamic analysis to analyze the file.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

d) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger

hook into the target application. Next, the application will copy
the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

e) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

D. Implementation of Classification

For classification, this research performs classification by
instruction frequency.

a) Instruction Extraction: The first step of this process is to
create an objfile of the malware file. This can be done by using
the objdump utility and the output is the file information,
address, opcode and assembly instruction. Once the objfile is
created, the assembly instruction is extracted with the
utilization of sed and cut utilities. The extracted instructions are
kept for instruction calculation and classification.

b) Instruction Calculation and Classification: The first step
of this process is to load the previously saved file which
contains the extracted instructions. Once this has been done, the
application will iterate through the file and count the frequency
of each individual instruction available as well as the total
instruction. With the individual instruction frequency ready at
hand, the application will divide each of the 8 instructions (mov,
add, push, pop, call, jmp, xor, cmp) over the total instruction to
gain the percentage of the instructions. Finally, this percentage
will be used to perform classification.

IV. RESULT

The analysis of the four main processes which are static
analysis process, dynamic analysis process, hybrid analysis
process and classification process is performed in an emulated
environment that runs a Microsoft Windows 7 (64-bit). The
Conficker worm provided by MyCERT from CyberSecurity
Malaysia is used in this research to generate the results.

A. Static Analysis Module
In static analysis module, there are 3 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 4.

36

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 33

the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

b) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

C. Implementation of Hybrid Analysis

For hybrid analysis, this research combines the methods from
both static and dynamic analysis to analyze the file.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

d) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger

hook into the target application. Next, the application will copy
the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

e) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

D. Implementation of Classification

For classification, this research performs classification by
instruction frequency.

a) Instruction Extraction: The first step of this process is to
create an objfile of the malware file. This can be done by using
the objdump utility and the output is the file information,
address, opcode and assembly instruction. Once the objfile is
created, the assembly instruction is extracted with the
utilization of sed and cut utilities. The extracted instructions are
kept for instruction calculation and classification.

b) Instruction Calculation and Classification: The first step
of this process is to load the previously saved file which
contains the extracted instructions. Once this has been done, the
application will iterate through the file and count the frequency
of each individual instruction available as well as the total
instruction. With the individual instruction frequency ready at
hand, the application will divide each of the 8 instructions (mov,
add, push, pop, call, jmp, xor, cmp) over the total instruction to
gain the percentage of the instructions. Finally, this percentage
will be used to perform classification.

IV. RESULT

The analysis of the four main processes which are static
analysis process, dynamic analysis process, hybrid analysis
process and classification process is performed in an emulated
environment that runs a Microsoft Windows 7 (64-bit). The
Conficker worm provided by MyCERT from CyberSecurity
Malaysia is used in this research to generate the results.

A. Static Analysis Module
In static analysis module, there are 3 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 4.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 33

the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

b) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

C. Implementation of Hybrid Analysis

For hybrid analysis, this research combines the methods from
both static and dynamic analysis to analyze the file.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

d) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger

hook into the target application. Next, the application will copy
the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

e) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

D. Implementation of Classification

For classification, this research performs classification by
instruction frequency.

a) Instruction Extraction: The first step of this process is to
create an objfile of the malware file. This can be done by using
the objdump utility and the output is the file information,
address, opcode and assembly instruction. Once the objfile is
created, the assembly instruction is extracted with the
utilization of sed and cut utilities. The extracted instructions are
kept for instruction calculation and classification.

b) Instruction Calculation and Classification: The first step
of this process is to load the previously saved file which
contains the extracted instructions. Once this has been done, the
application will iterate through the file and count the frequency
of each individual instruction available as well as the total
instruction. With the individual instruction frequency ready at
hand, the application will divide each of the 8 instructions (mov,
add, push, pop, call, jmp, xor, cmp) over the total instruction to
gain the percentage of the instructions. Finally, this percentage
will be used to perform classification.

IV. RESULT

The analysis of the four main processes which are static
analysis process, dynamic analysis process, hybrid analysis
process and classification process is performed in an emulated
environment that runs a Microsoft Windows 7 (64-bit). The
Conficker worm provided by MyCERT from CyberSecurity
Malaysia is used in this research to generate the results.

A. Static Analysis Module
In static analysis module, there are 3 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 4.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 33

the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

b) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

C. Implementation of Hybrid Analysis

For hybrid analysis, this research combines the methods from
both static and dynamic analysis to analyze the file.

a) YARA Rules Check: The first step of this process is to load
PEiD rules, packer rules and anti-virtual machine/anti
debugging rules. Upon completion of loading the rules, the file
will be tested against these rules to find any matching array of
bytes, string or reference. The PEiD rules are used to determine
if the file has any PEiD recognizable packers. In addition, the
packer rules are used to further determine if the file has been
packed and what type of packer has been used. As for the anti-
virtual machine/anti debugging rules, it is used to determine if
the file has any anti-virtual machine/anti debugging properties
that may disrupt further analysis. All matching rules will be
displayed.

b) String Extraction: The first step of this process is to load
the selected file into memory. Once the file is loaded, a regular
expression pattern is used to search for all printable UTF-16
strings from within the region of memory of the file. Next, all
strings that exist will be appended and displayed.

c) PE Header Information Extraction: The first step of this
process is to load the selected file into memory. Once the file is
loaded, extraction of the section information, header
information and import information are executed. After all that,
all information extracted will be displayed in a report. The
information section will display information such as the section
name, virtual address of the section, virtual size of the section,
and the size of raw data. The header information will dis-play
the image base, entry point address, and the number of sections
as well as the section data. For the import information, the DLL,
the imported function name and the imported function address
will be displayed.

d) API Call Logging and Visualization: The first step of this
process is to identify the type of file that has been loaded. If the
file is a dynamic link library (DLL) file, the process will launch
the target application which will host the DLL file. In this
research, the target application is putty.exe. Once the target
application is executed, the application will place a debugger

hook into the target application. Next, the application will copy
the DLL file to SysWOW64 directory and proceed with DLL
injection into the target application. After injecting, API calls
related to files and registry will be tracked and logged.
However, if the file is an executable (EXE) file, the process will
launch the EXE file and immediately place a debugger hook
onto the newly launched EXE file. API calls related to files and
registry will be tracked and logged. Finally, upon completion
of API call logging, the log will be used to generate a graph to
visualize the API call made by the DLL/EXE file.

e) Registry Entry Check: The first step of this process is to
read the selected registry entry. After reading the selected
registry entry, the application will make a backup of the said
registry entry for comparison purposes after executing the
malware. Once the malware has finished running, the selected
registry will be read once more, and the initial registry will be
loaded and compared to the current registry to find the
differences that the malware potentially has changed. The
registry will be displayed.

D. Implementation of Classification

For classification, this research performs classification by
instruction frequency.

a) Instruction Extraction: The first step of this process is to
create an objfile of the malware file. This can be done by using
the objdump utility and the output is the file information,
address, opcode and assembly instruction. Once the objfile is
created, the assembly instruction is extracted with the
utilization of sed and cut utilities. The extracted instructions are
kept for instruction calculation and classification.

b) Instruction Calculation and Classification: The first step
of this process is to load the previously saved file which
contains the extracted instructions. Once this has been done, the
application will iterate through the file and count the frequency
of each individual instruction available as well as the total
instruction. With the individual instruction frequency ready at
hand, the application will divide each of the 8 instructions (mov,
add, push, pop, call, jmp, xor, cmp) over the total instruction to
gain the percentage of the instructions. Finally, this percentage
will be used to perform classification.

IV. RESULT

The analysis of the four main processes which are static
analysis process, dynamic analysis process, hybrid analysis
process and classification process is performed in an emulated
environment that runs a Microsoft Windows 7 (64-bit). The
Conficker worm provided by MyCERT from CyberSecurity
Malaysia is used in this research to generate the results.

A. Static Analysis Module
In static analysis module, there are 3 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 4.

Digital Jawi Palaeography: Studies from the Perspective of Computer Science

37ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 34

b) String Extraction: The malware is loaded into the memory
and a regular expression pattern is used to display all printable
strings found within the malware. The list of printable strings
will be displayed as depicted in Figure 5.

c) PE Header Information Extraction:
The malware is loaded into the memory and the extraction of

the section information, header information and import
information are executed. Result from the information
extraction is displayed as depicted in Figure 5.

Fig. 5. Static Analysis Result

B. Dynamic Analysis Module
In dynamic analysis module, there are 2 routines which are

processed.
a) API Call Logging and Visualization: The malware is

executed and the graph for the API call is generated as shown
in Figure 6.

Fig. 6. API Call Visualization Result

b) Registry Entry Check: The registry changes that are made
by the malware that has been executed towards specific registry
is displayed in Figure 7.

Fig. 7. Registry Entry Check Result

C. Hybrid Analysis Module
In hybrid analysis module, there are 5 routines which are

processed.
a) YARA Rule Check: PEiD, packer and anti-virtual

machine/anti-debugging rules are loaded, and the malware is
checked against the rules. The details of the matches will be
displayed as depicted in Figure 7.

b) String Extraction: The malware is loaded into the
memory and a regular expression pattern is used to display all
printable strings found within the malware. The list of printable
strings will be displayed as depicted in Figure 7.

c) PE Header Information Extraction: The malware is
loaded into the memory and the extraction of the section
information, header information and import information are
executed. Result from the information extraction is displayed
as depicted in Figure 8.

38

Journal of Advanced Computing Technology and Application

ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 36

[4] Windows, N. (2001). Backdoors and Trojan Horses. Information Security
Technical Report, Vol. 6, No. 4, pp. 31–57.

[5] Landi, M. (2009). The methods of windows rootkits. Journal of Applied
Security Research, Vol. 4, No. 3, pp. 389–426.

[6] Brewer, R. (2016). Ransomware attacks: detection, prevention and cure.
Network Security, Vol. 9, pp. 5-9.

[7] Ahmed, Y. A., Maarof, M. A., Hassan, F. M., & Abshir, M. M. (2014).
Survey of Key logger Technologies. International Journal of Computer
Science and Telecommunications, Vol. 5, No. 2, pp. 31.

[8] Fortinet. (n.d.). PROTECTING NETWORKS AGAINST SPYWARE,
ADWARE AND OTHER FORMS OF "GRAYWARE". California:
Fortinet. Retrieved from http://www.boll.ch/fortinet/assets/Grayware.pdf

[9] McAfee . (2010). McAfee Threats Report: Third Quarter 2010. California:
McAfee .

[10] McAfee. (2016). McAfee Labs Threats Report September 2016.
California: McAfee.

[11] McAfee. (2018). McAfee Labs Threat Report December 2018. California:
McAfee.

[12] Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware Analysis and
Classification: A Survey. Journal of Information Security, Vol. 5, No. 2,
pp. 56–64.

[13] Sikorski, M., & Honig, A. (2012). Basic Static Analysis. In M. Sikorski,
& A. Honig, PRACTICAL MALWARE ANALYSIS (The Hands-On
Guide to Dissecting Malicious Software) (p. 2). San Francisco: No Starch
Press.

[14] Kakisim, A. G., Nar, M., Carkaci, N., & Sogukpinar, I. (2018, November).
Analysis and Evaluation of Dynamic Feature-Based Malware Detection
Methods. In International Conference on Security for Information
Technology and Communications, pp. 247-258. Springer, Cham.

[15] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on
Automated Dynamic Malware-Analysis. ACM Computing Surveys, Vol.
44, No. 2, pp. 6-12.

[16] Bulazel, A., & Yener, B. (2017, November). A survey on automated
dynamic malware analysis evasion and counter-evasion: Pc, mobile, and
web. In Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium (p. 2). ACM.

[17] Sikorski, M., & Honig, A. (2012). Advanced Dynamic Analysis. In M.
Sikorski, & A. Honig, PRACTICAL MALWARE ANALYSIS (The
Hands-On Guide to Dissecting Malicious Software) (p. 3). San Francisco:
No Starch Press.

[18] Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., & Nicholas,
C. (2018). An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques,
Vol. 14, No. 1, pp. 1-2

[19] Perdisci, R., Lanzi, A., & Lee, W. (2008, December). McBoost: Boosting
scalability in malware collection and analysis using statistical
classification of executables. In 2008 Annual Computer Security
Applications Conference (ACSAC) (pp. 301-310). IEEE.

[20] Rieck, K., Trinius, P., Willems, C., & Holz_aff2n3, T. (2011). Automatic
Analysis of Malware Behavior Using Machine Learning. Journal of
Computer Security, Vol. 19, No. 4, pp. 639–668.

[21] Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009). Malware detection
using statistical analysis of byte-level file content. Proceedings of the
ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics
- CSI-KDD ’09, pp. 23–31.

[22] Kim, T. G., Kang, B., & Im, E. G. (2013). Malware classification method
via binary content comparison. Information (Japan), Vol. 16, No. 8A, pp.
5773–5788.

[23] Bilar, D. (2007). Opcodes as predictor for malware. International Journal
of Electronic Security and Digital Forensics, Vol 1, No. 2, pp. 156.

Siti Rahayu Selamat is currently a lecturer at the
Universiti Teknikal Malaysia Melaka, Malaysia. She
received her Doctor of Philosophy in Computer
Science (Digital Forensics). Her research interests
include network forensic, cyber terrorism, cyber
violence extremism, intrusion detection, network
security and penetration testing. She is also a member
of Information Security, Forensics and Networking
(INSFORNET) research group and actively doing
research on malware, criminal behavior and cyber

violence extremism profiling.

Ng Thiam Tet is a student Bacholer in Computer
Science (Computer Networking) at the Faculty of
Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Malaysia. His
final year project is malware analysis. He is also
interested in the area of digital forensics and
penetration testing. Currently, he was working as an
executive that responsible for incident response and
threat for his organization.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 36

[4] Windows, N. (2001). Backdoors and Trojan Horses. Information Security
Technical Report, Vol. 6, No. 4, pp. 31–57.

[5] Landi, M. (2009). The methods of windows rootkits. Journal of Applied
Security Research, Vol. 4, No. 3, pp. 389–426.

[6] Brewer, R. (2016). Ransomware attacks: detection, prevention and cure.
Network Security, Vol. 9, pp. 5-9.

[7] Ahmed, Y. A., Maarof, M. A., Hassan, F. M., & Abshir, M. M. (2014).
Survey of Key logger Technologies. International Journal of Computer
Science and Telecommunications, Vol. 5, No. 2, pp. 31.

[8] Fortinet. (n.d.). PROTECTING NETWORKS AGAINST SPYWARE,
ADWARE AND OTHER FORMS OF "GRAYWARE". California:
Fortinet. Retrieved from http://www.boll.ch/fortinet/assets/Grayware.pdf

[9] McAfee . (2010). McAfee Threats Report: Third Quarter 2010. California:
McAfee .

[10] McAfee. (2016). McAfee Labs Threats Report September 2016.
California: McAfee.

[11] McAfee. (2018). McAfee Labs Threat Report December 2018. California:
McAfee.

[12] Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware Analysis and
Classification: A Survey. Journal of Information Security, Vol. 5, No. 2,
pp. 56–64.

[13] Sikorski, M., & Honig, A. (2012). Basic Static Analysis. In M. Sikorski,
& A. Honig, PRACTICAL MALWARE ANALYSIS (The Hands-On
Guide to Dissecting Malicious Software) (p. 2). San Francisco: No Starch
Press.

[14] Kakisim, A. G., Nar, M., Carkaci, N., & Sogukpinar, I. (2018, November).
Analysis and Evaluation of Dynamic Feature-Based Malware Detection
Methods. In International Conference on Security for Information
Technology and Communications, pp. 247-258. Springer, Cham.

[15] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on
Automated Dynamic Malware-Analysis. ACM Computing Surveys, Vol.
44, No. 2, pp. 6-12.

[16] Bulazel, A., & Yener, B. (2017, November). A survey on automated
dynamic malware analysis evasion and counter-evasion: Pc, mobile, and
web. In Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium (p. 2). ACM.

[17] Sikorski, M., & Honig, A. (2012). Advanced Dynamic Analysis. In M.
Sikorski, & A. Honig, PRACTICAL MALWARE ANALYSIS (The
Hands-On Guide to Dissecting Malicious Software) (p. 3). San Francisco:
No Starch Press.

[18] Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., & Nicholas,
C. (2018). An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques,
Vol. 14, No. 1, pp. 1-2

[19] Perdisci, R., Lanzi, A., & Lee, W. (2008, December). McBoost: Boosting
scalability in malware collection and analysis using statistical
classification of executables. In 2008 Annual Computer Security
Applications Conference (ACSAC) (pp. 301-310). IEEE.

[20] Rieck, K., Trinius, P., Willems, C., & Holz_aff2n3, T. (2011). Automatic
Analysis of Malware Behavior Using Machine Learning. Journal of
Computer Security, Vol. 19, No. 4, pp. 639–668.

[21] Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009). Malware detection
using statistical analysis of byte-level file content. Proceedings of the
ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics
- CSI-KDD ’09, pp. 23–31.

[22] Kim, T. G., Kang, B., & Im, E. G. (2013). Malware classification method
via binary content comparison. Information (Japan), Vol. 16, No. 8A, pp.
5773–5788.

[23] Bilar, D. (2007). Opcodes as predictor for malware. International Journal
of Electronic Security and Digital Forensics, Vol 1, No. 2, pp. 156.

Siti Rahayu Selamat is currently a lecturer at the
Universiti Teknikal Malaysia Melaka, Malaysia. She
received her Doctor of Philosophy in Computer
Science (Digital Forensics). Her research interests
include network forensic, cyber terrorism, cyber
violence extremism, intrusion detection, network
security and penetration testing. She is also a member
of Information Security, Forensics and Networking
(INSFORNET) research group and actively doing
research on malware, criminal behavior and cyber

violence extremism profiling.

Ng Thiam Tet is a student Bacholer in Computer
Science (Computer Networking) at the Faculty of
Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Malaysia. His
final year project is malware analysis. He is also
interested in the area of digital forensics and
penetration testing. Currently, he was working as an
executive that responsible for incident response and
threat for his organization.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 35

Fig. 8. Dynamic Analysis Result

d) API Call Logging and Visualization: The malware is
executed and the graph for the API call is generated as shown
in Figure 9.

Fig. 9. API Call Visualization Result

e) Registry Entry Check: The registry changes that are
made by the malware that has been executed towards specific
registry is displayed in Figure 7.

D. Classification Module

In classification module, there are 2 routines which are
processed.

a) Instruction Extraction: The objfile of the malware file is
created by using the objdump utility. The assembly instruction
is extracted from the objfile with the utilization of sed and cut
utilities. This list of assembly instruction will be used for the
calculation and classification process.

b) Instruction Calculation and Classification: The file which
contains the extracted instructions is loaded and will be iterated
to count the frequency of each individual instruction available
as well as the total amount of instructions. With the individual
instruction frequency ready at hand, 8 instructions (mov, add,
push, pop, call, jmp, xor, cmp) will be divided over the total
instruction to gain the percentage of the instructions. Finally,
this percentage will be used to perform classification. The result
of the classification is displayed as depicted in Figure 10.

Fig. 10. Classification Result

V. CONCLUSION
In this paper, the researchers have utilized static and dynamic

malware analysis in order to identify the behavior of the
malware. The research combines both static and dynamic
malware analysis techniques to gain more de-tails
understanding on how the malware behave and the type of API
called in the Windows environment. The output of the analysis
is used to visualize the API call made by the malware. This
research is a preliminary worked for automated malware
analysis. The finding will contribute ideas in finding an
effective method to automate malware analysis.

ACKNOWLEDGMENT

The authors would like to express the appreciation to
INSFORNET Research Group, C-ACT and Universiti Teknikal
Malaysia Melaka in encouraging the authors to perform this
research and develop the tool.

REFERENCES

[1] Milošević, N. (2013). History of malware. arXiv Preprint
arXiv:1302.5392, pp. 1–11.

[2] Cohen, F. (1987). Computer viruses. Computers & Security, Vol. 6, No. 1,
pp. 22–35.

[3] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A
taxonomy of computer worms. Proceedings of the 2003 ACM Workshop
on Rapid Malcode - WORM’03, pp. 11.

Digital Jawi Palaeography: Studies from the Perspective of Computer Science

39ISSN: 2672-7188 Vol. 1 No. 1 May 2019

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 36

[4] Windows, N. (2001). Backdoors and Trojan Horses. Information Security
Technical Report, Vol. 6, No. 4, pp. 31–57.

[5] Landi, M. (2009). The methods of windows rootkits. Journal of Applied
Security Research, Vol. 4, No. 3, pp. 389–426.

[6] Brewer, R. (2016). Ransomware attacks: detection, prevention and cure.
Network Security, Vol. 9, pp. 5-9.

[7] Ahmed, Y. A., Maarof, M. A., Hassan, F. M., & Abshir, M. M. (2014).
Survey of Key logger Technologies. International Journal of Computer
Science and Telecommunications, Vol. 5, No. 2, pp. 31.

[8] Fortinet. (n.d.). PROTECTING NETWORKS AGAINST SPYWARE,
ADWARE AND OTHER FORMS OF "GRAYWARE". California:
Fortinet. Retrieved from http://www.boll.ch/fortinet/assets/Grayware.pdf

[9] McAfee . (2010). McAfee Threats Report: Third Quarter 2010. California:
McAfee .

[10] McAfee. (2016). McAfee Labs Threats Report September 2016.
California: McAfee.

[11] McAfee. (2018). McAfee Labs Threat Report December 2018. California:
McAfee.

[12] Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware Analysis and
Classification: A Survey. Journal of Information Security, Vol. 5, No. 2,
pp. 56–64.

[13] Sikorski, M., & Honig, A. (2012). Basic Static Analysis. In M. Sikorski,
& A. Honig, PRACTICAL MALWARE ANALYSIS (The Hands-On
Guide to Dissecting Malicious Software) (p. 2). San Francisco: No Starch
Press.

[14] Kakisim, A. G., Nar, M., Carkaci, N., & Sogukpinar, I. (2018, November).
Analysis and Evaluation of Dynamic Feature-Based Malware Detection
Methods. In International Conference on Security for Information
Technology and Communications, pp. 247-258. Springer, Cham.

[15] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on
Automated Dynamic Malware-Analysis. ACM Computing Surveys, Vol.
44, No. 2, pp. 6-12.

[16] Bulazel, A., & Yener, B. (2017, November). A survey on automated
dynamic malware analysis evasion and counter-evasion: Pc, mobile, and
web. In Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium (p. 2). ACM.

[17] Sikorski, M., & Honig, A. (2012). Advanced Dynamic Analysis. In M.
Sikorski, & A. Honig, PRACTICAL MALWARE ANALYSIS (The
Hands-On Guide to Dissecting Malicious Software) (p. 3). San Francisco:
No Starch Press.

[18] Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., & Nicholas,
C. (2018). An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques,
Vol. 14, No. 1, pp. 1-2

[19] Perdisci, R., Lanzi, A., & Lee, W. (2008, December). McBoost: Boosting
scalability in malware collection and analysis using statistical
classification of executables. In 2008 Annual Computer Security
Applications Conference (ACSAC) (pp. 301-310). IEEE.

[20] Rieck, K., Trinius, P., Willems, C., & Holz_aff2n3, T. (2011). Automatic
Analysis of Malware Behavior Using Machine Learning. Journal of
Computer Security, Vol. 19, No. 4, pp. 639–668.

[21] Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009). Malware detection
using statistical analysis of byte-level file content. Proceedings of the
ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics
- CSI-KDD ’09, pp. 23–31.

[22] Kim, T. G., Kang, B., & Im, E. G. (2013). Malware classification method
via binary content comparison. Information (Japan), Vol. 16, No. 8A, pp.
5773–5788.

[23] Bilar, D. (2007). Opcodes as predictor for malware. International Journal
of Electronic Security and Digital Forensics, Vol 1, No. 2, pp. 156.

Siti Rahayu Selamat is currently a lecturer at the
Universiti Teknikal Malaysia Melaka, Malaysia. She
received her Doctor of Philosophy in Computer
Science (Digital Forensics). Her research interests
include network forensic, cyber terrorism, cyber
violence extremism, intrusion detection, network
security and penetration testing. She is also a member
of Information Security, Forensics and Networking
(INSFORNET) research group and actively doing
research on malware, criminal behavior and cyber

violence extremism profiling.

Ng Thiam Tet is a student Bacholer in Computer
Science (Computer Networking) at the Faculty of
Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Malaysia. His
final year project is malware analysis. He is also
interested in the area of digital forensics and
penetration testing. Currently, he was working as an
executive that responsible for incident response and
threat for his organization.

JOURNAL OF ADVANCED COMPUTING TECHNOLOGY AND APPLICATION (JACTA), VOL. 1, NO. 1, MAY 2019, pp. 30-36 36

[4] Windows, N. (2001). Backdoors and Trojan Horses. Information Security
Technical Report, Vol. 6, No. 4, pp. 31–57.

[5] Landi, M. (2009). The methods of windows rootkits. Journal of Applied
Security Research, Vol. 4, No. 3, pp. 389–426.

[6] Brewer, R. (2016). Ransomware attacks: detection, prevention and cure.
Network Security, Vol. 9, pp. 5-9.

[7] Ahmed, Y. A., Maarof, M. A., Hassan, F. M., & Abshir, M. M. (2014).
Survey of Key logger Technologies. International Journal of Computer
Science and Telecommunications, Vol. 5, No. 2, pp. 31.

[8] Fortinet. (n.d.). PROTECTING NETWORKS AGAINST SPYWARE,
ADWARE AND OTHER FORMS OF "GRAYWARE". California:
Fortinet. Retrieved from http://www.boll.ch/fortinet/assets/Grayware.pdf

[9] McAfee . (2010). McAfee Threats Report: Third Quarter 2010. California:
McAfee .

[10] McAfee. (2016). McAfee Labs Threats Report September 2016.
California: McAfee.

[11] McAfee. (2018). McAfee Labs Threat Report December 2018. California:
McAfee.

[12] Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware Analysis and
Classification: A Survey. Journal of Information Security, Vol. 5, No. 2,
pp. 56–64.

[13] Sikorski, M., & Honig, A. (2012). Basic Static Analysis. In M. Sikorski,
& A. Honig, PRACTICAL MALWARE ANALYSIS (The Hands-On
Guide to Dissecting Malicious Software) (p. 2). San Francisco: No Starch
Press.

[14] Kakisim, A. G., Nar, M., Carkaci, N., & Sogukpinar, I. (2018, November).
Analysis and Evaluation of Dynamic Feature-Based Malware Detection
Methods. In International Conference on Security for Information
Technology and Communications, pp. 247-258. Springer, Cham.

[15] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A Survey on
Automated Dynamic Malware-Analysis. ACM Computing Surveys, Vol.
44, No. 2, pp. 6-12.

[16] Bulazel, A., & Yener, B. (2017, November). A survey on automated
dynamic malware analysis evasion and counter-evasion: Pc, mobile, and
web. In Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium (p. 2). ACM.

[17] Sikorski, M., & Honig, A. (2012). Advanced Dynamic Analysis. In M.
Sikorski, & A. Honig, PRACTICAL MALWARE ANALYSIS (The
Hands-On Guide to Dissecting Malicious Software) (p. 3). San Francisco:
No Starch Press.

[18] Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., & Nicholas,
C. (2018). An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques,
Vol. 14, No. 1, pp. 1-2

[19] Perdisci, R., Lanzi, A., & Lee, W. (2008, December). McBoost: Boosting
scalability in malware collection and analysis using statistical
classification of executables. In 2008 Annual Computer Security
Applications Conference (ACSAC) (pp. 301-310). IEEE.

[20] Rieck, K., Trinius, P., Willems, C., & Holz_aff2n3, T. (2011). Automatic
Analysis of Malware Behavior Using Machine Learning. Journal of
Computer Security, Vol. 19, No. 4, pp. 639–668.

[21] Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009). Malware detection
using statistical analysis of byte-level file content. Proceedings of the
ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics
- CSI-KDD ’09, pp. 23–31.

[22] Kim, T. G., Kang, B., & Im, E. G. (2013). Malware classification method
via binary content comparison. Information (Japan), Vol. 16, No. 8A, pp.
5773–5788.

[23] Bilar, D. (2007). Opcodes as predictor for malware. International Journal
of Electronic Security and Digital Forensics, Vol 1, No. 2, pp. 156.

Siti Rahayu Selamat is currently a lecturer at the
Universiti Teknikal Malaysia Melaka, Malaysia. She
received her Doctor of Philosophy in Computer
Science (Digital Forensics). Her research interests
include network forensic, cyber terrorism, cyber
violence extremism, intrusion detection, network
security and penetration testing. She is also a member
of Information Security, Forensics and Networking
(INSFORNET) research group and actively doing
research on malware, criminal behavior and cyber

violence extremism profiling.

Ng Thiam Tet is a student Bacholer in Computer
Science (Computer Networking) at the Faculty of
Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Malaysia. His
final year project is malware analysis. He is also
interested in the area of digital forensics and
penetration testing. Currently, he was working as an
executive that responsible for incident response and
threat for his organization.

	00TOC
	01(01-08)
	02(09-16)
	03(17-26)
	04(27-32)
	05(33-40)

